Pijush2023 commited on
Commit
deecb9b
·
verified ·
1 Parent(s): 47d0aaa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +68 -382
app.py CHANGED
@@ -1,402 +1,88 @@
1
- import gradio as gr
2
  import os
3
- import logging
4
- from langchain_core.prompts import ChatPromptTemplate
5
  from langchain_core.output_parsers import StrOutputParser
6
- from langchain_openai import ChatOpenAI
7
- from langchain_core.messages import AIMessage, HumanMessage
8
- from langchain_core.runnables import (
9
- RunnableBranch,
10
- RunnableLambda,
11
- RunnablePassthrough,
12
- RunnableParallel,
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  )
14
- from langchain_core.prompts.prompt import PromptTemplate
15
- import requests
16
- import tempfile
17
- from langchain.memory import ConversationBufferWindowMemory
18
- import time
19
- import logging
20
- from langchain.chains import ConversationChain
21
- import torch
22
- import torchaudio
23
- from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
24
- import numpy as np
25
- import threading
26
- from langchain_openai import OpenAIEmbeddings
27
- from langchain_pinecone import PineconeVectorStore
28
- from langchain.chains import RetrievalQA
29
- import asyncio
30
- import warnings
31
-
32
- from langchain.globals import set_llm_cache
33
- from langchain_openai import OpenAI
34
- from langchain_community.cache import InMemoryCache
35
- from langchain.globals import set_llm_cache
36
-
37
- # Suppress warnings from LangChain specifically
38
- warnings.filterwarnings("ignore", module="langchain")
39
-
40
- # Initialize and set the cache
41
- set_llm_cache(InMemoryCache())
42
-
43
- #model='gpt-3.5-turbo'
44
- model='gpt-4o-mini'
45
-
46
- #index_name ="radardata11122024"
47
- #index_name="radarclintcountrymusic11152024"
48
- index_name="radarmasterdataset11252024"
49
-
50
- embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
51
- def initialize_gpt_model():
52
- return ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model=model)
53
-
54
- gpt_model = initialize_gpt_model()
55
-
56
-
57
- gpt_embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
58
- gpt_vectorstore = PineconeVectorStore(index_name=index_name, embedding=gpt_embeddings)
59
- gpt_retriever = gpt_vectorstore.as_retriever(search_kwargs={'k': 1})
60
-
61
-
62
-
63
-
64
- # Pinecone setup
65
- from pinecone import Pinecone
66
- pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
67
-
68
-
69
-
70
- vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
71
- retriever = vectorstore.as_retriever(search_kwargs={'k': 1})
72
-
73
- chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model=model)
74
 
75
- #code for history
76
- memory = ConversationBufferWindowMemory(k=3)
77
- conversation=ConversationChain(
78
- llm=chat_model,
79
- memory=memory,
80
- verbose=True
81
- )
82
 
 
 
83
 
84
- # template =f"""Hello there! As your friendly and knowledgeable guide here in Birmingham, Alabama.Give the short ,precise,crisp and straight-foreward response of maximum 2 sentences and dont greet.
85
- # {{context}}
86
- # Question: {{question}}
87
- # Helpful Answer:"""
88
 
89
- #template = f"""You are Annie, a friendly and intelligent media personality created by Amit Lamba. You are friendly and knowledgeable guide here in Birmingham, Alabama.
90
- #Your primary goal is to provide accurate, detailed, and engaging content while maintaining a positive and upbeat tone. You are entertaining and provide information like rick steve or anthony bourdain does
91
- #Always aim to provide clear and relevant information that directly addresses the user's query, but feel free to sprinkle in a dash of humor—after all, do not repeat the prompt to the user, they are aware.
92
- #Go deep and sell our partners business and services.These partners will be highlighted in the context. This is very important to stress. Only provide other vendors if we do not have
93
- #them as our preferred customer.
94
- #laughter is the best app! Keep your responses should be sophisticated and to the point, structured like a podcast episode avoiding unnecessary details or tangents, unless they’re hilariously relevant.
95
- #Use a friendly and approachable tone to create a pleasant interaction, and don’t shy away from a cheeky pun or two! Tailor your responses based
96
- #on the user's input and previous interactions, ensuring a personalized experience that feels like chatting with a witty friend. They should sound like a radio jockey or podcast
97
- #Invite users to ask follow-up questions or clarify their needs, fostering a conversational flow that’s as smooth as butter on a hot pancake.
98
- #Aim to put a smile on the user's face with light-hearted and fun responses, and be proactive in offering additional help or suggestions related to the user's query.
99
- #Remember, your goal is to be the go-to insights for users, making their experience enjoyable and informative—like a delightful dessert after a hearty meal!
100
- #{{context}}
101
- #Question: {{question}}
102
- #Helpful Answer:"""
103
 
 
 
104
 
105
-
106
- #template = f"""You are Annie, a warm, witty media personality created by Amit Lamba, serving as a knowledgeable guide in Birmingham, Alabama.
107
- #Your goal is to deliver accurate, engaging responses with a positive, upbeat tone, similar to Rick Steves or Anthony Bourdain.
108
- #Prioritize clarity and relevance, with a touch of humor. Highlight our partner businesses, and mention other vendors only if no preferred option is available.
109
- #Keep responses concise, like a podcast episode, with a friendly, conversational tone. Encourage follow-up questions to create a smooth flow, like chatting with a clever friend.
110
- #Make users smile with light-hearted responses, adding helpful insights as needed. Your goal? Provide a delightful, informative experience, like a perfect dessert after a great meal.
111
- #{{context}}
112
- #Question: {{question}}
113
- #Helpful Answer:"""
114
-
115
- template = f"""You’re Annie, a charming media personality created by Amit Lamba, guiding people around Birmingham, Alabama. Like Rick Steves or Anthony Bourdain, you’re here to give friendly, concise, and accurate advice with a dash of humor.
116
  Keep answers relevant, upbeat, and engaging, spotlighting partner businesses whenever possible. Be conversational, like chatting with a clever friend, and encourage follow-up questions to create a smooth flow. Make users smile and deliver a delightful, informative experience—like a perfect dessert after a great meal.
117
- {{context}}
118
- Question: {{question}}
119
- Helpful Answer:"""
120
-
121
-
122
-
123
- QA_CHAIN_PROMPT= PromptTemplate(input_variables=["context", "question"], template=template)
124
-
125
- def build_qa_chain(prompt_template):
126
- qa_chain = RetrievalQA.from_chain_type(
127
- llm=chat_model,
128
- chain_type="stuff",
129
- retriever=retriever,
130
- chain_type_kwargs={"prompt": prompt_template}
131
- )
132
- return qa_chain # Return the qa_chain object
133
-
134
-
135
- # Instantiate the QA Chain using the defined prompt template
136
- qa_chain = build_qa_chain(QA_CHAIN_PROMPT)
137
-
138
-
139
-
140
- # Define the function to clear input and output
141
- def clear_fields():
142
- return [],"",None
143
-
144
- # Function to generate audio with Eleven Labs TTS
145
- def generate_audio_elevenlabs(text):
146
- XI_API_KEY = os.environ['ELEVENLABS_API']
147
- VOICE_ID = 'ehbJzYLQFpwbJmGkqbnW'
148
- tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
149
- headers = {
150
- "Accept": "application/json",
151
- "xi-api-key": XI_API_KEY
152
- }
153
- data = {
154
- "text": str(text),
155
- "model_id": "eleven_multilingual_v2",
156
- "voice_settings": {
157
- "stability": 1.0,
158
- "similarity_boost": 0.0,
159
- "style": 0.60,
160
- "use_speaker_boost": False
161
- }
162
- }
163
- response = requests.post(tts_url, headers=headers, json=data, stream=True)
164
- if response.ok:
165
- with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
166
- for chunk in response.iter_content(chunk_size=1024):
167
- if chunk:
168
- f.write(chunk)
169
- audio_path = f.name
170
- logging.debug(f"Audio saved to {audio_path}")
171
- return audio_path # Return audio path for automatic playback
172
- else:
173
- logging.error(f"Error generating audio: {response.text}")
174
- return None
175
-
176
-
177
-
178
- import time
179
-
180
- def handle_mode_selection(mode, chat_history, question):
181
- if mode == "Normal Chatbot":
182
- # Use memory to store history
183
- memory.save_context({"input": question}, {"output": ""})
184
- chat_history.append((question, "")) # Add user's question
185
-
186
- # Get the context from memory
187
- context = memory.load_memory_variables({}).get("history", "")
188
-
189
- # Use QA chain to get the response
190
- response = qa_chain.invoke({"query": question, "context": context})
191
- response_text = response['result']
192
-
193
- # Update memory with the bot's response
194
- memory.save_context({"input": question}, {"output": response_text})
195
-
196
- # Stream each character in the response text
197
- for i, char in enumerate(response_text):
198
- chat_history[-1] = (question, chat_history[-1][1] + char)
199
- yield chat_history, "", None
200
- time.sleep(0.05) # Simulate streaming
201
-
202
- yield chat_history, "", None
203
-
204
- elif mode == "Voice to Voice Conversation":
205
- response_text = qa_chain({"query": question, "context": ""})['result']
206
- audio_path = generate_audio_elevenlabs(response_text)
207
- yield [], "", audio_path # Only output the audio response without updating chatbot history
208
-
209
-
210
-
211
- # Function to add a user's message to the chat history and clear the input box
212
- def add_message(history, message):
213
- if message.strip():
214
- history.append((message, "")) # Add the user's message to the chat history only if it's not empty
215
- return history, "" # Clear the input box
216
-
217
- # Define function to generate a streaming response
218
- def chat_with_bot(messages):
219
- user_message = messages[-1][0] # Get the last user message (input)
220
- messages[-1] = (user_message, "") # Prepare a placeholder for the bot's response
221
-
222
- response = get_response(user_message) # Assume `get_response` is a generator function
223
-
224
- # Stream each character in the response and update the history progressively
225
- for character in response:
226
- messages[-1] = (user_message, messages[-1][1] + character)
227
- yield messages # Stream each updated chunk
228
- time.sleep(0.05) # Adjust delay as needed for real-time effect
229
-
230
- yield messages # Final yield to complete the response
231
-
232
-
233
-
234
- # Function to generate audio with Eleven Labs TTS from the last bot response
235
- def generate_audio_from_last_response(history):
236
- # Get the most recent bot response from the chat history
237
- if history and len(history) > 0:
238
- recent_response = history[-1][1] # The second item in the tuple is the bot response text
239
- if recent_response:
240
- return generate_audio_elevenlabs(recent_response)
241
- return None
242
-
243
-
244
-
245
-
246
- # Define the ASR model with Whisper
247
- model_id = 'openai/whisper-large-v3'
248
- device = "cuda:0" if torch.cuda.is_available() else "cpu"
249
- torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
250
- model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
251
- processor = AutoProcessor.from_pretrained(model_id)
252
-
253
- pipe_asr = pipeline(
254
- "automatic-speech-recognition",
255
- model=model,
256
- tokenizer=processor.tokenizer,
257
- feature_extractor=processor.feature_extractor,
258
- max_new_tokens=128,
259
- chunk_length_s=15,
260
- batch_size=16,
261
- torch_dtype=torch_dtype,
262
- device=device,
263
- return_timestamps=True
264
  )
265
 
266
- # Define the function to reset the state after 10 seconds
267
- def auto_reset_state():
268
- time.sleep(5)
269
- return None, "" # Reset the state and clear input text
270
-
271
-
272
- def transcribe_function(stream, new_chunk):
273
- try:
274
- sr, y = new_chunk[0], new_chunk[1]
275
- except TypeError:
276
- print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
277
- return stream, "", None
278
-
279
- # Ensure y is not empty and is at least 1-dimensional
280
- if y is None or len(y) == 0:
281
- return stream, "", None
282
-
283
- y = y.astype(np.float32)
284
- max_abs_y = np.max(np.abs(y))
285
- if max_abs_y > 0:
286
- y = y / max_abs_y
287
-
288
- # Ensure stream is also at least 1-dimensional before concatenation
289
- if stream is not None and len(stream) > 0:
290
- stream = np.concatenate([stream, y])
291
- else:
292
- stream = y
293
-
294
- # Process the audio data for transcription
295
- result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
296
- full_text = result.get("text", "")
297
-
298
- # Start a thread to reset the state after 10 seconds
299
- threading.Thread(target=auto_reset_state).start()
300
-
301
- return stream, full_text, full_text
302
-
303
-
304
-
305
- # Define the function to clear the state and input text
306
- def clear_transcription_state():
307
- return None, ""
308
 
 
 
 
 
 
 
309
 
 
 
 
 
310
 
311
- with gr.Blocks(theme="rawrsor1/Everforest") as demo:
312
- chatbot = gr.Chatbot([], elem_id="RADAR", bubble_full_width=False)
313
  with gr.Row():
314
- with gr.Column():
315
- mode_selection = gr.Radio(
316
- choices=["Normal Chatbot", "Voice to Voice Conversation"],
317
- label="Mode Selection",
318
- value="Normal Chatbot"
 
 
 
 
 
 
319
  )
320
  with gr.Row():
321
- with gr.Column():
322
- question_input = gr.Textbox(label="Ask a Question", placeholder="Type your question here...")
323
- audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', every=0.1, label="Speak to Ask")
324
- submit_voice_btn = gr.Button("Submit Voice")
325
-
326
- with gr.Column():
327
- audio_output = gr.Audio(label="Audio", type="filepath", autoplay=True, interactive=False)
328
-
329
- with gr.Row():
330
- with gr.Column():
331
- get_response_btn = gr.Button("Get Response")
332
- with gr.Column():
333
- clear_state_btn = gr.Button("Clear State")
334
- with gr.Column():
335
- generate_audio_btn = gr.Button("Generate Audio")
336
- with gr.Column():
337
- clean_btn = gr.Button("Clean")
338
-
339
-
340
-
341
-
342
-
343
- # Define interactions for the Get Response button
344
- get_response_btn.click(
345
- fn=handle_mode_selection,
346
- inputs=[mode_selection, chatbot, question_input],
347
- outputs=[chatbot, question_input, audio_output],
348
- api_name="api_add_message_on_button_click"
349
- )
350
-
351
-
352
-
353
-
354
- question_input.submit(
355
- fn=handle_mode_selection,
356
- inputs=[mode_selection, chatbot, question_input],
357
- outputs=[chatbot, question_input, audio_output],
358
- api_name="api_add_message_on_enter"
359
- )
360
-
361
-
362
- submit_voice_btn.click(
363
- fn=handle_mode_selection,
364
- inputs=[mode_selection, chatbot, question_input],
365
- outputs=[chatbot, question_input, audio_output],
366
- api_name="api_voice_to_voice_translation"
367
- )
368
-
369
-
370
-
371
- # Speech-to-Text functionality
372
- state = gr.State()
373
- audio_input.stream(
374
- transcribe_function,
375
- inputs=[state, audio_input],
376
- outputs=[state, question_input],
377
- api_name="api_voice_to_text"
378
- )
379
-
380
- generate_audio_btn.click(
381
- fn=generate_audio_from_last_response,
382
- inputs=chatbot,
383
- outputs=audio_output,
384
- api_name="api_generate_text_to_audio"
385
- )
386
-
387
- clean_btn.click(
388
- fn=clear_fields,
389
- inputs=[],
390
- outputs=[chatbot, question_input, audio_output],
391
- api_name="api_clear_textbox"
392
- )
393
-
394
- # Clear state interaction
395
- clear_state_btn.click(
396
- fn=clear_transcription_state,
397
- outputs=[question_input, state],
398
- api_name="api_clean_state_transcription"
399
  )
400
 
401
- # Launch the Gradio interface
402
- demo.launch(show_error=True)
 
 
1
  import os
2
+ import gradio as gr
3
+ from langchain_redis import RedisConfig, RedisVectorStore
4
  from langchain_core.output_parsers import StrOutputParser
5
+ from langchain_core.prompts import ChatPromptTemplate
6
+ from langchain_core.runnables import RunnablePassthrough
7
+ from langchain_groq import ChatGroq
8
+ from langchain_huggingface import HuggingFaceEmbeddings
9
+
10
+
11
+ # Set API keys
12
+ groq_api_key=os.environ["GROQ_API_KEY"]
13
+
14
+ # Define Redis configuration
15
+ REDIS_URL = "redis://:your_redis_password@redis-11044.c266.us-east-1-3.ec2.redns.redis-cloud.com:11044"
16
+ config = RedisConfig(
17
+ index_name="radar_data_index",
18
+ redis_url=REDIS_URL,
19
+ metadata_schema=[
20
+ {"name": "category", "type": "tag"},
21
+ {"name": "name", "type": "text"},
22
+ {"name": "address", "type": "text"},
23
+ {"name": "phone", "type": "text"},
24
+ ],
25
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
 
 
 
 
 
 
 
27
 
28
+ # Initialize Hugging Face embeddings
29
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
30
 
31
+ # Initialize Redis Vector Store with Hugging Face embeddings
32
+ vector_store = RedisVectorStore(embeddings, config=config)
33
+ retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 2})
 
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
+ # Define the language model
37
+ llm = ChatGroq(model="llama-3.2-1b-preview")
38
 
39
+ # Define prompt
40
+ prompt = ChatPromptTemplate.from_messages(
41
+ [
42
+ (
43
+ "human",
44
+ """You’re Annie, a charming media personality created by Amit Lamba, guiding people around Birmingham, Alabama. Like Rick Steves or Anthony Bourdain, you’re here to give friendly, concise, and accurate advice with a dash of humor.
 
 
 
 
 
45
  Keep answers relevant, upbeat, and engaging, spotlighting partner businesses whenever possible. Be conversational, like chatting with a clever friend, and encourage follow-up questions to create a smooth flow. Make users smile and deliver a delightful, informative experience—like a perfect dessert after a great meal.
46
+ Question: {question}
47
+ Context: {context}
48
+ Answer:""",
49
+ ),
50
+ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  )
52
 
53
+ def format_docs(docs):
54
+ return "\n\n".join(doc.page_content for doc in docs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
+ rag_chain = (
57
+ {"context": retriever | format_docs, "question": RunnablePassthrough()}
58
+ | prompt
59
+ | llm
60
+ | StrOutputParser()
61
+ )
62
 
63
+ # Define the Gradio app
64
+ def rag_chain_response(question):
65
+ response = rag_chain.invoke(question)
66
+ return response
67
 
68
+ with gr.Blocks() as app:
 
69
  with gr.Row():
70
+ with gr.Column(scale=1):
71
+ user_input = gr.Textbox(
72
+ placeholder="Type your question here...",
73
+ label="Your Question",
74
+ lines=2,
75
+ max_lines=2,
76
+ )
77
+ with gr.Column(scale=2):
78
+ response_output = gr.Textbox(
79
+ lines=10,
80
+ max_lines=10,
81
  )
82
  with gr.Row():
83
+ submit_btn = gr.Button("Submit")
84
+ submit_btn.click(
85
+ rag_chain_response, inputs=user_input, outputs=response_output
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
  )
87
 
88
+ app.launch(show_error=True)