Pijush2023 commited on
Commit
e92b7f0
·
verified ·
1 Parent(s): 8e9515b

Delete CHATTS/experimental/llm.py

Browse files
Files changed (1) hide show
  1. CHATTS/experimental/llm.py +0 -40
CHATTS/experimental/llm.py DELETED
@@ -1,40 +0,0 @@
1
-
2
- from openai import OpenAI
3
-
4
- prompt_dict = {
5
- 'kimi': [ {"role": "system", "content": "你是 Kimi,由 Moonshot AI 提供的人工智能助手,你更擅长中文和英文的对话。"},
6
- {"role": "user", "content": "你好,请注意你现在生成的文字要按照人日常生活的口吻,你的回复将会后续用TTS模型转为语音,并且请把回答控制在100字以内。并且标点符号仅包含逗号和句号,将数字等转为文字回答。"},
7
- {"role": "assistant", "content": "好的,我现在生成的文字将按照人日常生活的口吻, 并且我会把回答控制在一百字以内, 标点符号仅包含逗号和句号,将阿拉伯数字等转为中文文字回答。下面请开始对话。"},],
8
- 'deepseek': [
9
- {"role": "system", "content": "You are a helpful assistant"},
10
- {"role": "user", "content": "你好,请注意你现在生成的文字要按照人日常生活的口吻,你的回复将会后续用TTS模型转为语音,并且请把回答控制在100字以内。并且标点符号仅包含逗号和句号,将数字等转为文字回答。"},
11
- {"role": "assistant", "content": "好的,我现在生成的文字将按照人日常生活的口吻, 并且我会把回答控制在一百字以内, 标点符号仅包含逗号和句号,将阿拉伯数字等转为中文文字回答。下面请开始对话。"},],
12
- 'deepseek_TN': [
13
- {"role": "system", "content": "You are a helpful assistant"},
14
- {"role": "user", "content": "你好,现在我们在处理TTS的文本输入,下面将会给你输入一段文本,请你将其中的阿拉伯数字等等转为文字表达,并且输出的文本里仅包含逗号和句号这两个标点符号"},
15
- {"role": "assistant", "content": "好的,我现在对TTS的文本输入进行处理。这一般叫做text normalization。下面请输入"},
16
- {"role": "user", "content": "We paid $123 for this desk."},
17
- {"role": "assistant", "content": "We paid one hundred and twenty three dollars for this desk."},
18
- {"role": "user", "content": "详询请拨打010-724654"},
19
- {"role": "assistant", "content": "详询请拨打零幺零,七二四六五四"},
20
- {"role": "user", "content": "罗森宣布将于7月24日退市,在华门店超6000家!"},
21
- {"role": "assistant", "content": "罗森宣布将于七月二十四日退市,在华门店超过六千家。"},
22
- ],
23
- }
24
-
25
- class llm_api:
26
- def __init__(self, api_key, base_url, model):
27
- self.client = OpenAI(
28
- api_key = api_key,
29
- base_url = base_url,
30
- )
31
- self.model = model
32
- def call(self, user_question, temperature = 0.3, prompt_version='kimi', **kwargs):
33
-
34
- completion = self.client.chat.completions.create(
35
- model = self.model,
36
- messages = prompt_dict[prompt_version]+[{"role": "user", "content": user_question},],
37
- temperature = temperature,
38
- **kwargs
39
- )
40
- return completion.choices[0].message.content