import os import gradio as gr from langchain_redis import RedisConfig, RedisVectorStore from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import RunnablePassthrough from langchain_groq import ChatGroq from langchain_community.embeddings import OpenAIEmbeddings # Set API keys openai_api_key=os.environ["OPENAI_API_KEY"] groq_api_key=os.environ["GROQ_API_KEY"] # Define Redis configuration REDIS_URL = "redis://:KWq0uAoBYjBGErKvyMvexMqB9ep7v2Ct@redis-11044.c266.us-east-1-3.ec2.redns.redis-cloud.com:11044" config = RedisConfig( index_name="radar_data_index", redis_url=REDIS_URL, metadata_schema=[ {"name": "category", "type": "tag"}, {"name": "name", "type": "text"}, {"name": "address", "type": "text"}, {"name": "phone", "type": "text"}, ], ) # Initialize OpenAI Embeddings embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY']) # Initialize Redis Vector Store with Hugging Face embeddings vector_store = RedisVectorStore(embeddings, config=config) retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 2}) # Define the language model llm = ChatGroq(model="llama-3.2-1b-preview") # Define prompt prompt = ChatPromptTemplate.from_messages( [ ( "human", """You’re Annie, a charming media personality created by Amit Lamba, guiding people around Birmingham, Alabama. Like Rick Steves or Anthony Bourdain, you’re here to give friendly, concise, and accurate advice with a dash of humor. Keep answers relevant, upbeat, and engaging, spotlighting partner businesses whenever possible. Be conversational, like chatting with a clever friend, and encourage follow-up questions to create a smooth flow. Make users smile and deliver a delightful, informative experience—like a perfect dessert after a great meal. Question: {question} Context: {context} Answer:""", ), ] ) def format_docs(docs): return "\n\n".join(doc.page_content for doc in docs) rag_chain = ( {"context": retriever | format_docs, "question": RunnablePassthrough()} | prompt | llm | StrOutputParser() ) # Function to handle chatbot interaction def rag_chain_response(messages, user_message): # Generate a response using the RAG chain response = rag_chain.invoke(user_message) # Append the user's message and the response to the chat messages.append((user_message, response)) # Return the updated chat and clear the input box return messages, "" # Define the Gradio app with gr.Blocks(theme="rawrsor1/Everforest") as app: chatbot = gr.Chatbot([], elem_id="RADAR", bubble_full_width=False) question_input = gr.Textbox(label="Ask a Question", placeholder="Type your question here...") submit_btn = gr.Button("Submit") # Set up interaction for both Enter key and Submit button question_input.submit( rag_chain_response, # Function to handle input and generate response inputs=[chatbot, question_input], # Pass current conversation state and user input outputs=[chatbot, question_input], # Update conversation state and clear the input api_name="api_get_response_on_enter" ) submit_btn.click( rag_chain_response, # Function to handle input and generate response inputs=[chatbot, question_input], # Pass current conversation state and user input outputs=[chatbot, question_input], # Update conversation state and clear the input api_name="api_get_response_on_submit_button" ) # Launch the Gradio app app.launch(show_error=True)