import gradio as gr import os import logging from langchain_core.prompts import ChatPromptTemplate from langchain_core.output_parsers import StrOutputParser from langchain_openai import ChatOpenAI from langchain_community.graphs import Neo4jGraph from typing import List, Tuple from pydantic import BaseModel, Field from langchain_core.messages import AIMessage, HumanMessage from langchain_core.runnables import ( RunnableBranch, RunnableLambda, RunnablePassthrough, RunnableParallel, ) from langchain_core.prompts.prompt import PromptTemplate import requests import tempfile from langchain.memory import ConversationBufferWindowMemory import time import logging from langchain.chains import ConversationChain import torch import torchaudio from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor import numpy as np import threading # Setup conversational memory conversational_memory = ConversationBufferWindowMemory( memory_key='chat_history', k=10, return_messages=True ) # Setup Neo4j connection graph = Neo4jGraph( url="neo4j+s://6457770f.databases.neo4j.io", username="neo4j", password="Z10duoPkKCtENuOukw3eIlvl0xJWKtrVSr-_hGX1LQ4" ) # Define entity extraction and retrieval functions class Entities(BaseModel): names: List[str] = Field( ..., description="All the person, organization, or business entities that appear in the text" ) entity_prompt = ChatPromptTemplate.from_messages([ ("system", "You are extracting organization and person entities from the text."), ("human", "Use the given format to extract information from the following input: {question}"), ]) chat_model = ChatOpenAI(temperature=0, model_name="gpt-4o", api_key=os.environ['OPENAI_API_KEY']) entity_chain = entity_prompt | chat_model.with_structured_output(Entities) def remove_lucene_chars(input: str) -> str: return input.translate(str.maketrans({ "\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!", "(": r"\(", ")": r"\)", "{": r"\{", "}": r"\}", "[": r"\[", "]": r"\]", "^": r"\^", "~": r"\~", "*": r"\*", "?": r"\?", ":": r"\:", '"': r'\"', ";": r"\;", " ": r"\ " })) def generate_full_text_query(input: str) -> str: full_text_query = "" words = [el for el in remove_lucene_chars(input).split() if el] for word in words[:-1]: full_text_query += f" {word}~2 AND" full_text_query += f" {words[-1]}~2" return full_text_query.strip() # Setup logging to a file to capture debug information logging.basicConfig(filename='neo4j_retrieval.log', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') def structured_retriever(question: str) -> str: result = "" entities = entity_chain.invoke({"question": question}) for entity in entities.names: response = graph.query( """CALL db.index.fulltext.queryNodes('entity', $query, {limit:2}) YIELD node,score CALL { WITH node MATCH (node)-[r:!MENTIONS]->(neighbor) RETURN node.id + ' - ' + type(r) + ' -> ' + neighbor.id AS output UNION ALL WITH node MATCH (node)<-[r:!MENTIONS]-(neighbor) RETURN neighbor.id + ' - ' + type(r) + ' -> ' + node.id AS output } RETURN output LIMIT 50 """, {"query": generate_full_text_query(entity)}, ) result += "\n".join([el['output'] for el in response]) return result def retriever_neo4j(question: str): structured_data = structured_retriever(question) logging.debug(f"Structured data: {structured_data}") return structured_data # Define the chain for Neo4j-based retrieval and response generation chain_neo4j = ( RunnableParallel( { "context": RunnableLambda(lambda x: retriever_neo4j(x["question"])), "question": RunnablePassthrough(), } ) | ChatPromptTemplate.from_template("Answer: {context} Question: {question}") | chat_model | StrOutputParser() ) # Define the function to get the response def get_response(question): try: return chain_neo4j.invoke({"question": question}) except Exception as e: return f"Error: {str(e)}" # Define the function to clear input and output def clear_fields(): return [], "", None # Function to generate audio with Eleven Labs TTS def generate_audio_elevenlabs(text): XI_API_KEY = os.environ['ELEVENLABS_API'] VOICE_ID = 'ehbJzYLQFpwbJmGkqbnW' tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream" headers = { "Accept": "application/json", "xi-api-key": XI_API_KEY } data = { "text": str(text), "model_id": "eleven_multilingual_v2", "voice_settings": { "stability": 1.0, "similarity_boost": 0.0, "style": 0.60, "use_speaker_boost": False } } response = requests.post(tts_url, headers=headers, json=data, stream=True) if response.ok: with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f: for chunk in response.iter_content(chunk_size=1024): if chunk: f.write(chunk) audio_path = f.name logging.debug(f"Audio saved to {audio_path}") return audio_path # Return audio path for automatic playback else: logging.error(f"Error generating audio: {response.text}") return None # Function to handle voice to voice conversation def handle_voice_to_voice(chat_history, question): response = get_response(question) audio_path = generate_audio_elevenlabs(response) chat_history.append(("[Voice Input]", "[Voice Response]")) return chat_history, "", audio_path # Function to transcribe audio input def transcribe_function(stream, new_chunk): try: sr, y = new_chunk[0], new_chunk[1] except TypeError: print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}") return stream, "", None if y is None or len(y) == 0: return stream, "", None y = y.astype(np.float32) max_abs_y = np.max(np.abs(y)) if max_abs_y > 0: y = y / max_abs_y if stream is not None and len(stream) > 0: stream = np.concatenate([stream, y]) else: stream = y result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False) full_text = result.get("text", "") threading.Thread(target=auto_reset_state).start() return stream, full_text, full_text # Define the Gradio interface with gr.Blocks(theme="rawrsor1/Everforest") as demo: chatbot = gr.Chatbot([], elem_id="RADAR", bubble_full_width=False) mode_selection = gr.Radio( choices=["Normal Chatbot", "Voice to Voice Conversation"], label="Mode Selection", value="Normal Chatbot" ) question_input = gr.Textbox(label="Ask a Question", placeholder="Type your question here...") audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', every=0.1, label="Speak to Ask") submit_voice_btn = gr.Button("Submit Voice") audio_output = gr.Audio(label="Audio", type="filepath", autoplay=True, interactive=False) # Interactions for Submit Voice Button submit_voice_btn.click( fn=handle_voice_to_voice, inputs=[chatbot, question_input], outputs=[chatbot, question_input, audio_output], api_name="api_voice_to_voice_translation" ) # Speech-to-Text functionality state = gr.State() audio_input.stream( transcribe_function, inputs=[state, audio_input], outputs=[state, question_input], api_name="api_voice_to_text" ) demo.launch(show_error=True, share=True)