File size: 3,057 Bytes
80798b1
 
 
 
 
 
23b3158
 
7c1eaf5
80798b1
23b3158
 
 
80798b1
 
 
 
 
 
 
 
23b3158
80798b1
23b3158
 
 
 
80798b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4759a1e
23b3158
1191c5f
23b3158
 
4759a1e
 
23b3158
4759a1e
 
23b3158
 
 
 
 
 
4759a1e
23b3158
4759a1e
 
23b3158
 
 
 
4759a1e
 
23b3158
 
80798b1
 
 
 
 
4759a1e
80798b1
 
 
 
 
 
 
 
 
 
 
4759a1e
80798b1
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import gradio as gr
from huggingface_hub import InferenceClient

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""

# Default client with the first model
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")

# Function to switch between models based on selection
def switch_client(model_name: str):
    return InferenceClient(model_name)

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    model_name  # Add this parameter for model selection
):
    # Switch client based on model selection
    global client
    client = switch_client(model_name)
    
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response

# Model names and their pseudonyms
model_choices = [
    ("mistralai/Mistral-7B-Instruct-v0.3", "Lake 1 Base")
]

# Convert pseudonyms to model names for the dropdown
pseudonyms = [model[1] for model in model_choices]

# Function to handle model selection and pseudonyms
def respond_with_pseudonym(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    selected_pseudonym
):
    # Find the actual model name from the pseudonym
    model_name = next(model[0] for model in model_choices if model[1] == selected_pseudonym)
    
    # Call the existing respond function
    response = list(respond(message, history, system_message, max_tokens, temperature, top_p, model_name))
    
    # Add pseudonym at the end of the response
    response[-1] += f"\n\n[Response generated by: {selected_pseudonym}]"
    
    return response

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond_with_pseudonym,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
        gr.Dropdown(pseudonyms, label="Select Model", value=pseudonyms[0])  # Pseudonym selection dropdown
    ],
)

if __name__ == "__main__":
    demo.launch()