File size: 2,890 Bytes
80798b1 23b3158 7c1eaf5 80798b1 23b3158 80798b1 ee5c0a0 80798b1 ee5c0a0 80798b1 23b3158 ee5c0a0 80798b1 ee5c0a0 80798b1 ee5c0a0 80798b1 ee5c0a0 9db2371 80798b1 9db2371 80798b1 9db2371 80798b1 4759a1e 23b3158 1191c5f 23b3158 4759a1e 23b3158 4759a1e 23b3158 ee5c0a0 23b3158 4759a1e 23b3158 ee5c0a0 23b3158 80798b1 9db2371 80798b1 ee5c0a0 80798b1 ee5c0a0 80798b1 9db2371 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
import gradio as gr
from huggingface_hub import InferenceClient
# Default client with the first model
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
# Function to switch between models based on selection
def switch_client(model_name: str):
return InferenceClient(model_name)
# Define presets for each model
presets = {
"mistralai/Mistral-7B-Instruct-v0.3": {
"Fast": {"max_tokens": 256, "temperature": 1.0, "top_p": 0.9},
"Normal": {"max_tokens": 512, "temperature": 0.7, "top_p": 0.95},
"Quality": {"max_tokens": 1024, "temperature": 0.5, "top_p": 0.90},
"Unreal Performance": {"max_tokens": 2048, "temperature": 0.6, "top_p": 0.75},
}
}
# Fixed system message
SYSTEM_MESSAGE = "Lake 1 Base"
def respond(
message,
history: list,
model_name,
preset_name
):
# Switch client based on model selection
global client
client = switch_client(model_name)
messages = [{"role": "system", "content": SYSTEM_MESSAGE}]
# Ensure history is a list of dictionaries
for val in history:
if isinstance(val, dict) and 'role' in val and 'content' in val:
messages.append({"role": val['role'], "content": val['content']})
messages.append({"role": "user", "content": message})
# Get the preset settings
preset = presets[model_name][preset_name]
max_tokens = preset["max_tokens"]
temperature = preset["temperature"]
top_p = preset["top_p"]
# Get the response from the model
response = client.chat_completion(
messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
# Extract the content from the response
final_response = response.choices[0].message['content']
return final_response
# Model names and their pseudonyms
model_choices = [
("mistralai/Mistral-7B-Instruct-v0.3", "Lake 1 Base")
]
# Convert pseudonyms to model names for the dropdown
pseudonyms = [model[1] for model in model_choices]
# Function to handle model selection and pseudonyms
def respond_with_pseudonym(
message,
history: list,
selected_pseudonym,
selected_preset
):
# Find the actual model name from the pseudonym
model_name = next(model[0] for model in model_choices if model[1] == selected_pseudonym)
# Call the existing respond function
response = respond(message, history, model_name, selected_preset)
return response
# Gradio Chat Interface
demo = gr.ChatInterface(
fn=respond_with_pseudonym,
additional_inputs=[
gr.Dropdown(choices=list(presets["mistralai/Mistral-7B-Instruct-v0.3"].keys()), label="Select Preset", value="Fast"), # Preset selection dropdown
gr.Dropdown(choices=pseudonyms, label="Select Model", value=pseudonyms[0]) # Pseudonym selection dropdown
],
)
if __name__ == "__main__":
demo.launch() |