|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
|
|
|
|
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3") |
|
|
|
|
|
def switch_client(model_name: str): |
|
return InferenceClient(model_name) |
|
|
|
def respond( |
|
message, |
|
history: list[dict], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
model_name |
|
): |
|
|
|
global client |
|
client = switch_client(model_name) |
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
messages.append({"role": val['role'], "content": val['content']}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
response = client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
) |
|
|
|
|
|
final_response = response.choices[0].message['content'] |
|
|
|
return final_response |
|
|
|
|
|
model_choices = [ |
|
("mistralai/Mistral-7B-Instruct-v0.3", "Lake 1 Base") |
|
] |
|
|
|
|
|
pseudonyms = [model[1] for model in model_choices] |
|
|
|
|
|
def respond_with_pseudonym( |
|
message, |
|
history: list[dict], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
selected_pseudonym |
|
): |
|
|
|
model_name = next(model[0] for model in model_choices if model[1] == selected_pseudonym) |
|
|
|
|
|
response = respond(message, history, system_message, max_tokens, temperature, top_p, model_name) |
|
|
|
|
|
return response |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond_with_pseudonym, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
gr.Dropdown(pseudonyms, label="Select Model", value=pseudonyms[0]) |
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |