import gradio as gr from huggingface_hub import InferenceClient # Default client with the first model client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3") # Function to switch between models based on selection def switch_client(model_name: str): return InferenceClient(model_name) def respond( message, history: list[dict], system_message, max_tokens, temperature, top_p, model_name ): # Switch client based on model selection global client client = switch_client(model_name) messages = [{"role": "system", "content": system_message}] for val in history: messages.append({"role": val['role'], "content": val['content']}) messages.append({"role": "user", "content": message}) # Get the response from the model response = client.chat_completion( messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p, ) # Extract the content from the response final_response = response.choices[0].message['content'] return final_response # Model names and their pseudonyms model_choices = [ ("mistralai/Mistral-7B-Instruct-v0.3", "Lake 1 Base") ] # Convert pseudonyms to model names for the dropdown pseudonyms = [model[1] for model in model_choices] # Function to handle model selection and pseudonyms def respond_with_pseudonym( message, history: list[dict], system_message, max_tokens, temperature, top_p, selected_pseudonym ): # Find the actual model name from the pseudonym model_name = next(model[0] for model in model_choices if model[1] == selected_pseudonym) # Call the existing respond function response = respond(message, history, system_message, max_tokens, temperature, top_p, model_name) # Add pseudonym at the end of the response response += f"\n\n[Response generated by: {selected_pseudonym}]" return response # Gradio Chat Interface demo = gr.ChatInterface( respond_with_pseudonym, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), gr.Dropdown(pseudonyms, label="Select Model", value=pseudonyms[0]) # Pseudonym selection dropdown ], ) if __name__ == "__main__": demo.launch()