File size: 2,582 Bytes
86d9217 cda6239 a7a95f3 86d9217 cda6239 86d9217 f154bf1 86d9217 f154bf1 86d9217 cda6239 86d9217 f154bf1 86d9217 f154bf1 86d9217 f154bf1 86d9217 f154bf1 86d9217 1c91ea3 cda6239 115746c cda6239 1c91ea3 cda6239 1c91ea3 cda6239 f154bf1 cda6239 1c91ea3 cda6239 1c91ea3 cda6239 f154bf1 cda6239 c6e9030 cda6239 86d9217 f154bf1 86d9217 1c91ea3 86d9217 1c91ea3 86d9217 f154bf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
import gradio as gr
from huggingface_hub import InferenceClient
# Default client with the first model
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
# Function to switch between models based on selection
def switch_client(model_name: str):
return InferenceClient(model_name)
def respond(
message,
history: list[dict],
system_message,
max_tokens,
temperature,
top_p,
model_name
):
# Switch client based on model selection
global client
client = switch_client(model_name)
messages = [{"role": "system", "content": system_message}]
for val in history:
messages.append({"role": val['role'], "content": val['content']})
messages.append({"role": "user", "content": message})
# Get the response from the model
response = client.chat_completion(
messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
# Extract the content from the response
final_response = response.choices[0].message['content']
return final_response
# Model names and their pseudonyms
model_choices = [
("mistralai/Mistral-7B-Instruct-v0.3", "Lake 1 Base")
]
# Convert pseudonyms to model names for the dropdown
pseudonyms = [model[1] for model in model_choices]
# Function to handle model selection and pseudonyms
def respond_with_pseudonym(
message,
history: list[dict],
system_message,
max_tokens,
temperature,
top_p,
selected_pseudonym
):
# Find the actual model name from the pseudonym
model_name = next(model[0] for model in model_choices if model[1] == selected_pseudonym)
# Call the existing respond function
response = respond(message, history, system_message, max_tokens, temperature, top_p, model_name)
# No longer adding the pseudonym at the end of the response
return response
# Gradio Chat Interface
demo = gr.ChatInterface(
respond_with_pseudonym,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
gr.Dropdown(pseudonyms, label="Select Model", value=pseudonyms[0]) # Pseudonym selection dropdown
],
)
if __name__ == "__main__":
demo.launch() |