|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
|
|
""" |
|
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference |
|
""" |
|
|
|
|
|
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") |
|
|
|
|
|
def switch_client(model_name: str): |
|
return InferenceClient(model_name) |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
model_name |
|
): |
|
|
|
global client |
|
client = switch_client(model_name) |
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
|
|
for message in client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = message.choices[0].delta.content |
|
|
|
response += token |
|
yield response |
|
|
|
|
|
yield f"\n\n[Response generated by model: {model_name}]" |
|
|
|
|
|
model_choices = [ |
|
("HuggingFaceH4/zephyr-7b-beta", "Lake [Test]"), |
|
("google/mt5-base", "Lake 1 Base"), |
|
("google/mt5-large", "Lake 1 Advanced") |
|
] |
|
|
|
|
|
model_names = [model[0] for model in model_choices] |
|
|
|
|
|
def respond_with_model_name( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
model_name |
|
): |
|
|
|
model_display_name = dict(model_choices)[model_name] |
|
|
|
|
|
response = list(respond(message, history, system_message, max_tokens, temperature, top_p, model_name)) |
|
|
|
|
|
response[-1] += f"\n\n[Response generated by: {model_display_name}]" |
|
|
|
return response |
|
|
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
""" |
|
demo = gr.ChatInterface( |
|
respond_with_model_name, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
gr.Dropdown(model_names, label="Select Model", value=model_names[0]) |
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|