File size: 6,073 Bytes
6957169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
import cv2
import json
import time
import pickle
import openai
import re
from word2number import w2n


def create_dir(output_dir):
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    

def read_csv(file):
    data = []
    with open(file, 'r') as f:
        for line in f:
            data.append(line.strip())
    return data


def read_pandas_csv(csv_path):
    # read a pandas csv sheet 
    import pandas as pd
    df = pd.read_csv(csv_path)
    return df


def read_json(path):
    with open(path, 'r', encoding='utf-8') as f:
        return json.load(f)


def read_jsonl(file):
    with open(file, 'r') as f:
        data = [json.loads(line) for line in f]
    return data


def read_pickle(path):
    with open(path, 'rb') as f:
        return pickle.load(f)


def save_json(data, path):
    with open(path, 'w') as f:
        json.dump(data, f, indent=4)


def save_array_img(path, image):
    cv2.imwrite(path, image)


def contains_digit(text):
    # check if text contains a digit
    if any(char.isdigit() for char in text):
        return True
    return False  
    
def contains_number_word(text):
    # check if text contains a number word
    ignore_words = ["a", "an", "point"]
    words = re.findall(r'\b\w+\b', text)  # This regex pattern matches any word in the text
    for word in words:
        if word in ignore_words:
            continue
        try:
            w2n.word_to_num(word)
            return True  # If the word can be converted to a number, return True
        except ValueError:
            continue  # If the word can't be converted to a number, continue with the next word
    
    # check if text contains a digit
    if any(char.isdigit() for char in text):
        return True

    return False  # If none of the words could be converted to a number, return False


def contains_quantity_word(text, special_keep_words=[]):
    # check if text contains a quantity word
    quantity_words = ["most", "least", "fewest"
                      "more", "less", "fewer", 
                      "largest", "smallest", "greatest", 
                      "larger", "smaller", "greater", 
                      "highest", "lowest", "higher", "lower",
                      "increase", "decrease",
                      "minimum", "maximum", "max", "min",
                      "mean", "average", "median",
                      "total", "sum", "add", "subtract",
                      "difference", "quotient", "gap",
                      "half", "double", "twice", "triple",
                      "square", "cube", "root",
                      "approximate", "approximation",
                      "triangle", "rectangle", "circle", "square", "cube", "sphere", "cylinder", "cone", "pyramid",
                      "multiply", "divide",
                      "percentage", "percent", "ratio", "proportion", "fraction", "rate", 
                    ]
    
    quantity_words += special_keep_words # dataset specific words
    
    words = re.findall(r'\b\w+\b', text)  # This regex pattern matches any word in the text
    if any(word in quantity_words for word in words):
        return True

    return False  # If none of the words could be converted to a number, return False


def is_bool_word(text):
    if text in ["Yes", "No", "True", "False", 
                "yes", "no", "true", "false", 
                "YES", "NO", "TRUE", "FALSE"]:
        return True
    return False


def is_digit_string(text):
    # remove ".0000"
    text = text.strip()
    text = re.sub(r'\.0+$', '', text)
    try:
        int(text)
        return True
    except ValueError:
        return False
   
    
def is_float_string(text):
    # text is a float string if it contains a "." and can be converted to a float
    if "." in text:
        try:
            float(text)
            return True
        except ValueError:
            return False
    return False


def copy_image(image_path, output_image_path):
    from shutil import copyfile
    copyfile(image_path, output_image_path)


def copy_dir(src_dir, dst_dir):
    from shutil import copytree
    # copy the source directory to the target directory
    copytree(src_dir, dst_dir)


import PIL.Image as Image
def get_image_size(img_path):
    img = Image.open(img_path)
    width, height = img.size
    return width, height


def get_chat_response(promot, api_key, model="gpt-3.5-turbo", temperature=0, max_tokens=256, n=1, patience=10000000,
 sleep_time=0):
    messages = [
        {"role": "user", "content": promot},
    ]
    # print("I am here")
    while patience > 0:
        patience -= 1
        try:
            response = openai.ChatCompletion.create(model=model,
                                                messages=messages,
                                                api_key=api_key,
                                                temperature=temperature,
                                                max_tokens=max_tokens,
                                                n=n)
            if n == 1:
                prediction = response['choices'][0]['message']['content'].strip()
                if prediction != "" and prediction != None:
                    return prediction
            else:
                prediction = [choice['message']['content'].strip() for choice in response['choices']]
                if prediction[0] != "" and prediction[0] != None:
                    return prediction

        except Exception as e:
            if "Rate limit" not in str(e):
                print(e)

            if "Please reduce the length of the messages" in str(e):
                print("!!Reduce promot size")
                # reduce input prompt and keep the tail
                new_size = int(len(promot) * 0.9)
                new_start = len(promot) - new_size
                promot = promot[new_start:]
                messages = [
                    {"role": "user", "content": promot},
                ]
                
            if sleep_time > 0:
                time.sleep(sleep_time)
    return ""