File size: 8,812 Bytes
6957169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os
import re
import argparse
import pandas as pd

# !pip install python-Levenshtein
from Levenshtein import distance

import sys
sys.path.append('../')
from utilities import *


def get_most_similar(prediction, choices):
    """
    Use the Levenshtein distance (or edit distance) to determine which of the choices is most similar to the given prediction
    """
    distances = [distance(prediction, choice) for choice in choices]
    ind = distances.index(min(distances))
    return choices[ind]
    # return min(choices, key=lambda choice: distance(prediction, choice))


def normalize_extracted_answer(extraction, choices, question_type, answer_type, precision):
    """
    Normalize the extracted answer to match the answer type
    """
    if question_type == 'multi_choice':
        # make sure the extraction is a string
        if isinstance(extraction, str):
            extraction = extraction.strip()
        else:
            try:
                extraction = str(extraction)
            except:
                extraction = ""
    
        # extract "A" from "(A) text"
        letter = re.findall(r'\(([a-zA-Z])\)', extraction)
        if len(letter) > 0:
            extraction = letter[0].upper()
        
        options = [chr(ord('A') + i) for i in range(len(choices))]
            
        if extraction in options:
            # convert option letter to text, e.g. "A" -> "text"
            ind = options.index(extraction)
            extraction = choices[ind]
        else:
            # select the most similar option
            extraction = get_most_similar(extraction, choices)
        assert extraction in choices

    elif answer_type == 'integer':
        try:
            extraction = str(int(float(extraction)))
        except:
            extraction = None

    elif answer_type == 'float':
        try:
            extraction = str(round(float(extraction), precision))
        except:
            extraction = None
        
    elif answer_type == 'list':
        try:
            extraction = str(extraction)
        except:
            extraction = None

    return extraction
    

def safe_equal(prediction, answer):
    """
    Check if the prediction is equal to the answer, even if they are of different types
    """
    try:
        if prediction == answer:
            return True
        return False
    except Exception as e:
        print(e)
        return False


def get_acc_with_contion(res_pd, key, value):
    if key == 'skills':
        # if value in res_pd[key]:
        total_pd = res_pd[res_pd[key].apply(lambda x: value in x)]
    else:
        total_pd = res_pd[res_pd[key] == value]

    correct_pd = total_pd[total_pd['true_false'] == True]
    acc = "{:.2f}".format(len(correct_pd) / len(total_pd) * 100)
    return len(correct_pd), len(total_pd), acc
        
if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--output_dir', type=str, default='../results')
    parser.add_argument('--output_file', type=str, default='output.json')
    parser.add_argument('--score_file', type=str, default='scores.json')
    parser.add_argument('--gt_file', type=str, default='../data/testmini.json', help='ground truth file')
    parser.add_argument('--number', type=int, default=-1, help='number of problems to run')
    parser.add_argument('--rerun', action='store_true', help='rerun the evaluation')
    parser.add_argument('--caculate_gain', action='store_true', help='caculate the socre gains over random guess')
    parser.add_argument('--random_file', type=str, default='score_random_guess.json')  
    args = parser.parse_args()

    # args
    output_file = os.path.join(args.output_dir, args.output_file)

    # # quick test
    # output_file = '../results/llava-llama-2-13b/output_llava_llama_2_13b.json'

    # read json
    print(f"Reading {output_file}...")
    results = read_json(output_file)

    # read ground truth
    print(f"Reading {args.gt_file}...")
    gts = read_json(args.gt_file)

    # full pids
    full_pids = list(results.keys())
    if args.number > 0:
        full_pids = full_pids[:min(args.number, len(full_pids))]
    print("Number of testing problems:", len(full_pids))
    
    ## [1] Evaluate if the prediction is true or false
    print("\nEvaluating the predictions...")
    update_json_flag = False
    for pid in full_pids:
        problem = results[pid]
        # print(problem)

        if args.rerun:
            if 'prediction' in problem:
                del problem['prediction']
            if 'true_false' in problem:
                del problem['true_false']

        choices = problem['choices']
        question_type = problem['question_type']
        answer_type = problem['answer_type']
        precision = problem['precision']
        extraction = problem['extraction']

        if 'answer' in problem:
            answer = problem['answer']
        else:
            answer = gts[pid]['answer']
            problem['answer'] = answer

        # normalize the extracted answer to match the answer type
        prediction = normalize_extracted_answer(extraction, choices, question_type, answer_type, precision)

        # verify the prediction is true or false
        true_false = safe_equal(prediction, answer)
        
        # update the problem
        if "true_false" not in problem:
            update_json_flag = True

        elif true_false != problem['true_false']:
            update_json_flag = True

        if "prediction" not in problem:
            update_json_flag = True

        elif prediction !=  problem['prediction']:
            update_json_flag = True
            
        problem['prediction'] = prediction
        problem['true_false'] = true_false

    # save the updated json
    if update_json_flag:
        print("\n!!!Some problems are updated.!!!")
        print(f"\nSaving {output_file}...")
        save_json(results, output_file)

    ## [2] Calculate the average accuracy
    total = len(full_pids)
    correct = 0
    for pid in full_pids:
        if results[pid]['true_false']:
            correct += 1
    accuracy = str(round(correct / total * 100, 2))
    print(f"\nCorrect: {correct}, Total: {total}, Accuracy: {accuracy}%")

    scores = {"average": {"accuracy": accuracy, "correct": correct, "total": total}}
    
    ## [3] Calculate the fine-grained accuracy scores
    
    # merge the 'metadata' attribute into the data
    for pid in results:
        results[pid].update(results[pid].pop('metadata'))

    # convert the data to a pandas DataFrame
    df = pd.DataFrame(results).T

    print(len(df))
    print("Number of test problems:", len(df))
    # assert len(df) == 1000 # Important!!!

    # asign the target keys for evaluation
    target_keys = ['question_type', 'answer_type', 'language', 'source', 'category', 'task', 'context', 'grade', 'skills']
     
    for key in target_keys:
        print(f"\nType: [{key}]")
        # get the unique values of the key
        if key == 'skills':
            # the value is a list
            values = []
            for i in range(len(df)):
                values += df[key][i]
            values = list(set(values))
        else:
            values = df[key].unique()
        #print(values)

        # calculate the accuracy for each value
        scores[key] = {}
        for value in values:
            correct, total, acc = get_acc_with_contion(df, key, value)
            if total > 0:
                print(f"[{value}]: {acc}% ({correct}/{total})")
                scores[key][value] = {"accuracy": acc, "correct": correct, "total": total}
        
        # sort the scores by accuracy
        scores[key] = dict(sorted(scores[key].items(), key=lambda item: float(item[1]['accuracy']), reverse=True))

    # save the scores
    scores_file = os.path.join(args.output_dir, args.score_file)
    print(f"\nSaving {scores_file}...")
    save_json(scores, scores_file)
    print("\nDone!")

    # [4] Calculate the score gains over random guess
    if args.caculate_gain:
        random_file = os.path.join(args.output_dir, args.random_file)
        random_scores = json.load(open(random_file))

        print("\nCalculating the score gains...")
        for key in scores:
            if key == 'average':
                gain = round(float(scores[key]['accuracy']) - float(random_scores[key]['accuracy']), 2)
                scores[key]['acc_gain'] = gain
            else:
                for sub_key in scores[key]:
                    gain = round(float(scores[key][sub_key]['accuracy']) - float(random_scores[key][sub_key]['accuracy']), 2)
                    scores[key][sub_key]['acc_gain'] = str(gain)

        # save the score gains
        print(f"\nSaving {scores_file}...")    
        save_json(scores, scores_file)
        print("\nDone!")