Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,190 Bytes
6957169 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
# System
import torch
from torch import nn
from utils.utils import *
import torch.utils.checkpoint
from transformers.cache_utils import Cache
from typing import List, Optional, Tuple, Union
from .build_module import build_vision_projector, build_vision_tower
from .modeling_internlm2 import InternLM2Model, InternLM2PreTrainedModel
# Dataclass & ModelOutput
from dataclasses import dataclass
from transformers.modeling_outputs import ModelOutput
@dataclass
class MeteorCausalLMOutputWithPast(ModelOutput):
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[List[torch.FloatTensor]] = None
tor_features: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class MeteorForCausalLM(InternLM2PreTrainedModel):
_auto_class = 'AutoModelForCausalLM'
_tied_weights_keys = ['output.weight']
def __init__(self, config):
super().__init__(config)
# Model
self.model = InternLM2Model(config)
self.vocab_size = config.vocab_size
self.output = nn.Linear(config.hidden_size, config.vocab_size-2, bias=False)
self.max_length = config.max_length
# Initialize weights and apply final processing
self.post_init()
# Vision Encoder
self.vit = build_vision_tower()
# Vision Projection
self.vision_proj = build_vision_projector()
def eval_process(
self,
inputs,
data,
tokenizer,
device,
img_token_number,
):
batched_qa_prompt=[]
for _input in inputs:
# Visualization
# imim = _input['image'].cpu().permute(1, 2, 0)
# make question, rationale, and answer
question = make_instruction_for_eval_meteor(_input['question'], data)
# add bundle image tokens if it has <image> token
question = add_bundle_tokens(question, '<image>', img_token_number)
batched_qa_prompt.append(question)
'''For Final Outputs'''
qa_prompts = tokenizer(batched_qa_prompt, padding='longest', return_tensors="pt", add_special_tokens=False)
# [1] input_ids
input_ids = qa_prompts.input_ids.to(device)
# [2] attention_mask
attention_mask = qa_prompts.attention_mask.to(device)
# [3] im_mask
im_mask = torch.zeros_like(input_ids).bool()
im_mask[torch.where(input_ids==self.config.image_token_index)] = True
return {"input_ids": input_ids,
"attention_mask": attention_mask,
"im_mask": im_mask,
}
def clip_features(self, image):
self.vit.eval()
return self.vit(image)
def _merge_input_embeds_with_tor_features(self, tor_features, inputs_embeds, input_ids):
# batch index for image feature
batch_ind_tor_feature = 0
for ind, input_id in enumerate(input_ids):
matching = torch.where(input_id==self.config.tor_token_index)
num_tor_tokens_per_one_sample = len(matching[0])
inputs_embeds[ind][matching] = tor_features[batch_ind_tor_feature: batch_ind_tor_feature+num_tor_tokens_per_one_sample].to(inputs_embeds.dtype)
batch_ind_tor_feature += num_tor_tokens_per_one_sample
def _merge_input_embeds_with_image_features(self, image_features, inputs_embeds, input_ids):
# batch index for image feature
batch_ind_image_feature = 0
# shape of image_features
_, C, D = image_features.shape
for ind, input_id in enumerate(input_ids):
matching = torch.where(input_id==self.config.image_token_index)
num_image_tokens_per_one_sample = len(matching[0]) // C
inputs_embeds[ind][matching] = image_features[batch_ind_image_feature: batch_ind_image_feature+num_image_tokens_per_one_sample].view(-1, D)
batch_ind_image_feature += num_image_tokens_per_one_sample
def forward(
self,
input_ids: torch.LongTensor = None,
image_features: torch.FloatTensor = None,
tor_features: torch.FloatTensor = None,
attention_mask: Optional[torch.Tensor] = None,
im_mask: torch.BoolTensor = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MeteorCausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if inputs_embeds is None:
# 1. Extra the input embeddings
inputs_embeds = self.get_input_embeddings()(input_ids)
# 2. Merge text and images
if image_features is not None and input_ids.shape[1] != 1:
image_features = self.vision_proj(image_features.to(inputs_embeds.dtype))
self._merge_input_embeds_with_image_features(image_features, inputs_embeds, input_ids)
# 3. Merge text and <tor>
if tor_features is not None and input_ids.shape[1] != 1:
self._merge_input_embeds_with_tor_features(tor_features, inputs_embeds, input_ids)
# In case input_ids.shape[1] == 1 & image_features==None & past_key_values != None, we are in the case of
# generation with cache
elif past_key_values is not None and image_features is not None and input_ids.shape[1] == 1:
# Retrieve the first layer to inspect the logits and mask out the hidden states
# that are set to 0
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
# Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
# Get the target length
target_length = input_ids.shape[1]
past_length = first_layer_past_key_value.shape[-1]
extended_attention_mask = torch.ones(
(attention_mask.shape[0], past_length),
dtype=attention_mask.dtype,
device=attention_mask.device,
)
# Filter out only the tokens that can be un-attended, this can happen
# if one uses Llava + Fused modules where the cache on the
# first iteration is already big enough, or if one passes custom cache
valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
new_batch_index = batch_index[valid_indices]
new_non_attended_tokens = non_attended_tokens[valid_indices]
# Zero-out the places where we don't need to attend
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
im_mask = torch.zeros(inputs_embeds.shape[:2]).bool().to(inputs_embeds.device)
outputs = self.model(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
im_mask=im_mask,
)
hidden_states = outputs[0]
logits = self.output(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
if attention_mask is not None:
shift_attention_mask = attention_mask[..., 1:]
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
else:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return MeteorCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
tor_features=hidden_states[torch.where(input_ids==self.config.tor_token_index)],
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
image_features=None,
tor_features=None,
im_mask=None,
**kwargs):
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
position_ids = kwargs.get('position_ids', None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1]:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"image_features": image_features,
"tor_features": tor_features,
"im_mask": im_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (tuple(
past_state.index_select(0, beam_idx.to(past_state.device))
for past_state in layer_past), )
return reordered_past |