Spaces:
Sleeping
Sleeping
File size: 26,056 Bytes
6957169 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 |
import os
import re
import json
import shortuuid
import numpy as np
import pandas as pd
from config import *
from collections import defaultdict
from eval.utils import *
class BaseEvaluator:
def __init__(self):
super(BaseEvaluator, self).__init__()
# Create evaluation results folder
self.save_dir = os.path.join(DATASET_ROOT, "eval_results")
if not os.path.exists(self.save_dir):
os.makedirs(self.save_dir)
def reset(self):
# Reset results for new dataset evaluation
self.gen_answers = []
self.inputs = []
def process(self, inputs, outputs):
# Merge results
self.inputs.extend(inputs)
self.gen_answers.extend(outputs)
class Evaluator(BaseEvaluator):
def __init__(self):
"""
Eval Datasets
- VQAv2
- GQA
- SQA-IMG
- VizWiz
- TextVQA
- POPE
- MME
- MMBench
- MMBench-CN
- QBench
- MM-Vet
- MMMU
- MathVista
- AI2D
- HallusionBench
- ChartQA
- SEED
- LLaVA Wild
- BLINK
- MathVerse
"""
super().__init__()
def evaluate(self, model, dataset, accel):
# gathering all gpu to one device
self.inputs = accel.gather_for_metrics(self.inputs)
self.gen_answers = accel.gather_for_metrics(self.gen_answers)
if accel.is_main_process:
# check for duplicates
self.inputs, self.gen_answers = remove_duplicate(dataset, self.inputs, self.gen_answers)
# Select evaluation for dataset
if dataset == "vqav2":
return self.evaluate_vqa(model, accel)
elif dataset == "gqa":
return self.evaluate_gqa(model, accel)
elif dataset == "sqa":
return self.evaluate_sqa(model, accel)
elif dataset == "vizwiz":
return self.evaluate_vizwiz(model, accel)
elif dataset == "textvqa":
return self.evaluate_textvqa(model, accel)
elif dataset == "pope":
return self.evaluate_pope(model, accel)
elif dataset == "mme":
return self.evaluate_mme(model, accel)
elif dataset == "mmbench":
return self.evaluate_mmbench(model, accel)
elif dataset == "mmbench_dev":
return self.evaluate_mmbench_dev(model, accel)
elif dataset == "mmbench_cn":
return self.evaluate_mmbench_cn(model, accel)
elif dataset == "mmbench_cn_dev":
return self.evaluate_mmbench_cn_dev(model, accel)
elif dataset == "qbench":
return self.evaluate_qbench(model, accel)
elif dataset == "mm-vet":
return self.evaluate_mmvet(model, accel)
elif dataset == "mmmu":
return self.evaluate_mmmu(model, accel)
elif dataset == "mathvista":
return self.evaluate_mathvista(model, accel)
elif dataset == "ai2d":
return self.evaluate_ai2d(model, accel)
elif dataset == "hallusionbench":
return self.evaluate_hallusionbench(model, accel)
elif dataset == "chartqa":
return self.evaluate_chartqa(model, accel)
elif dataset == "seed":
return self.evaluate_seed(model, accel)
elif dataset == "llava":
return self.evaluate_llava(model, accel)
elif dataset == "blink":
return self.evaluate_blink(model, accel)
elif dataset == "mathverse":
return self.evaluate_mathverse(model, accel)
elif dataset == "mmstar":
return self.evaluate_mmstar(model, accel)
else:
raise ValueError(
f'{dataset} is not an available dataset.')
else:
return None
def evaluate_vqa(self, model, accel):
# VQAv2 Evaluation for EvalAI server
pred_answers = [{'question_id': inputs['id'], 'answer': answer} for inputs, answer in zip(self.inputs, self.gen_answers)]
pred_pth = os.path.join(self.save_dir, f"{model}_vqav2_results.json")
json.dump(pred_answers, open(pred_pth, "w"))
accel.print(f"Finished evaluating VQAv2. Evaluate the result file saved to {pred_pth} on EvalAI server.")
return
def evaluate_gqa(self, model, accel):
# GQA Evaluation
pred_answers = {inputs['id']: answer for inputs, answer in zip(self.inputs, self.gen_answers)}
# pred_answers = [{'question_id': inputs['id'], 'answer': answer} for inputs, answer in zip(self.inputs, self.gen_answers)]
pred_pth = os.path.join(self.save_dir, f"{model}_gqa_results.json")
json.dump(pred_answers, open(pred_pth, "w"))
accel.print("GQA Results:")
results = eval_gqa(pred_answers, json.load(open(os.path.join(DATASET_ROOT, GQA))))
return results['accuracy']
def evaluate_sqa(self, model, accel):
# SQA Evaluation
pred_answers = [{'question_id': inputs['id'], 'answer': convert_to_choice(answer, inputs['candidates']), 'gt': inputs['gt']} for inputs, answer in zip(self.inputs, self.gen_answers)]
pred_pth = os.path.join(self.save_dir, f"{model}_sqa_results.json")
json.dump(pred_answers, open(pred_pth, "w"))
# Compute accuracy
results = [(answer['answer'] == answer['gt']) for answer in pred_answers]
accel.print (f"SQA Accuracy: {np.mean(results)*100} %")
return np.mean(results)*100
def evaluate_vizwiz(self, model, accel):
# VizWiz Evaluation
evaluator = EvalAIAnswerProcessor()
pred_answers = [{'image': inputs['id'], 'answer': evaluator(answer)} for inputs, answer in zip(self.inputs, self.gen_answers)]
pred_pth = os.path.join(self.save_dir, f"{model}_vizwiz_results.json")
json.dump(pred_answers, open(pred_pth, "w"))
accel.print(f"Finished evaluating VizWiz. Evaluate the result file saved to {pred_pth} on EvalAI server.")
return
def evaluate_textvqa(self, model, accel):
# TextVQA Evaluation
pred_answers = [{'question_id': inputs['id'], 'pred_answer': answer, 'question': inputs['question'], 'gt_answers': inputs['gt']} for inputs, answer in zip(self.inputs, self.gen_answers)]
pred_pth = os.path.join(self.save_dir, f"{model}_textvqa_results.json")
json.dump(pred_answers, open(pred_pth, "w"))
evaluator = TextVQAAccuracyEvaluator()
results = evaluator.eval_pred_list(pred_answers)*100
accel.print (f"TextVQA Accuracy: {results} %")
return results
def evaluate_pope(self, model, accel):
# POPE Evaluation
pred_answers = [{'question_id': inputs['id'], 'answer': answer, 'question': inputs['question'], 'category': inputs['category']} for inputs, answer in zip(self.inputs, self.gen_answers)]
pred_pth = os.path.join(self.save_dir, f"{model}_pope_results.json")
json.dump(pred_answers, open(pred_pth, "w"))
pope_results = {}
pope_results['adversarial'] = None
pope_results['popular'] = None
pope_results['random'] = None
categories = ['adversarial', 'popular', 'random']
files = [POPE_ADVERSARIAL, POPE_POPULAR, POPE_RANDOM]
for category, file in zip(categories, files):
cur_answers = [x for x in pred_answers if x['category'] == category]
cur_answers = sorted(cur_answers, key=lambda x:x["question_id"])
pope_results[category] = eval_pope(cur_answers, os.path.join(DATASET_ROOT, file))
accel.print (f"POPE Adversarial Accuracy: {pope_results['adversarial']} %")
accel.print (f"POPE Popular Accuracy: {pope_results['popular']} %")
accel.print (f"POPE Random Accuracy: {pope_results['random']} %")
return pope_results
def evaluate_mme(self, model, accel):
# MME Evaluation
pred_answers = [{'question_id': inputs['id'], 'answer': answer, "question": inputs['question'], 'category': inputs['category']} for inputs, answer in zip(self.inputs, self.gen_answers)]
pred_pth = os.path.join(self.save_dir, f"{model}_mme_results.json")
json.dump(pred_answers, open(pred_pth, "w"))
ground_truth = get_gt(data_path=os.path.join(DATASET_ROOT, MME_DIR))
result_dir = os.path.join(self.save_dir, 'mme')
os.makedirs(result_dir, exist_ok=True)
results = defaultdict(list)
for answer in pred_answers:
file = answer['question_id'].split('/')[-1].split('.')[0] + '.txt'
results[answer['category']].append((file, answer['question'], answer['answer']))
for category, cate_tups in results.items():
with open(os.path.join(result_dir, f'{category}.txt'), 'w') as fp:
questions = set() # check for duplicates
for file, prompt, answer in cate_tups:
if 'Answer the question using a single word or phrase.' in prompt:
prompt = prompt.replace('Answer the question using a single word or phrase.', '').strip()
if 'Please answer yes or no.' not in prompt:
prompt = prompt + ' Please answer yes or no.'
if (category, file, prompt) not in ground_truth:
prompt = prompt.replace(' Please answer yes or no.', ' Please answer yes or no.')
gt_ans = ground_truth[category, file, prompt]
dup = file, prompt, gt_ans
tup = file, prompt, gt_ans, answer
if dup in questions:
continue
questions.add(dup)
fp.write('\t'.join(tup) + '\n')
evaluator = MMEEvaluator()
scores = evaluator.process_result(result_dir)
accel.print("MME Scores:")
accel.print(scores)
for eval_type, eval_scores in scores.items():
accel.print("===========", eval_type, "===========")
accel.print("total score:", eval_scores['total'], "\n")
for task_name, score in eval_scores.items():
accel.print("\t", task_name, " score:", score)
accel.print("\n")
return scores
def evaluate_mmbench(self, model, accel):
# MMBench Evaluation
df = pd.read_table(os.path.join(DATASET_ROOT, MMBENCH))
cur_df = df.copy()
cur_df = cur_df.drop(columns=['hint', 'category', 'source', 'image', 'comment', 'l2-category'])
cur_df.insert(6, 'prediction', None)
for inputs, answer in zip(self.inputs, self.gen_answers):
cur_df.loc[df['index'] == inputs['id'], 'prediction'] = answer
pred_pth = os.path.join(self.save_dir, f"{model}_mmbench_results.xlsx")
cur_df.to_excel(pred_pth, index=False, engine='openpyxl')
accel.print(f"Finished evaluating MMBench. Change {pred_pth} name to submission.xlsx and evaluate the result file saved to {pred_pth} on OpenCompass server.")
return
def evaluate_mmbench_dev(self, model, accel):
# MMBench Dev Evaluation
df = pd.read_table(os.path.join(DATASET_ROOT, MMBENCH_DEV))
cur_df = df.copy()
cur_df = cur_df.drop(columns=['hint', 'category', 'source', 'image', 'comment', 'l2-category'])
cur_df.insert(6, 'prediction', None)
for inputs, answer in zip(self.inputs, self.gen_answers):
cur_df.loc[df['index'] == inputs['id'], 'prediction'] = answer[0]
pred_pth = os.path.join(self.save_dir, f"{model}_mmbench_dev_results.xlsx")
cur_df.to_excel(pred_pth, index=False, engine='openpyxl')
accuracy = (cur_df['prediction'] == cur_df['answer']).mean()
accel.print(f'MMBench_dev Accuracy: {accuracy:.2%}')
return
def evaluate_mmbench_cn(self, model, accel):
# MMBench_CN Evaluation
df = pd.read_table(os.path.join(DATASET_ROOT, MMBENCH_CN))
cur_df = df.copy()
cur_df = cur_df.drop(columns=['hint', 'category', 'source', 'image', 'comment', 'l2-category'])
cur_df.insert(6, 'prediction', None)
for inputs, answer in zip(self.inputs, self.gen_answers):
cur_df.loc[df['index'] == inputs['id'], 'prediction'] = answer
pred_pth = os.path.join(self.save_dir, f"{model}_mmbench_cn_results.xlsx")
cur_df.to_excel(pred_pth, index=False, engine='openpyxl')
accel.print(f"Finished evaluating MMBench_CN. Change {pred_pth} name to submission.xlsx and evaluate the result file saved to {pred_pth} on OpenCompass server.")
return
def evaluate_mmbench_cn_dev(self, model, accel):
# MMBench_CN Dev Evaluation
df = pd.read_table(os.path.join(DATASET_ROOT, MMBENCH_CN_DEV))
cur_df = df.copy()
cur_df = cur_df.drop(columns=['hint', 'category', 'source', 'image', 'comment', 'l2-category'])
cur_df.insert(6, 'prediction', None)
for inputs, answer in zip(self.inputs, self.gen_answers):
cur_df.loc[df['index'] == inputs['id'], 'prediction'] = answer[0]
pred_pth = os.path.join(self.save_dir, f"{model}_mmbench_cn_dev_results.xlsx")
cur_df.to_excel(pred_pth, index=False, engine='openpyxl')
accuracy = (cur_df['prediction'] == cur_df['answer']).mean()
accel.print(f'MMBench_CN_dev Accuracy: {accuracy:.2%}')
return
def evaluate_qbench(self, model, accel):
# QBench Evaluation
pred_answers = [{'id': inputs['id'], 'answer': convert_to_choice(answer, inputs['candidates']), 'gt': inputs['gt'], 'candidates': inputs['candidates']} for inputs, answer in zip(self.inputs, self.gen_answers)]
pred_pth = os.path.join(self.save_dir, f'{model}_qbench_results.jsonl')
with open(pred_pth, "w") as pf:
pf.write(json.dumps(pred_answers) + "\n")
results = [(pred['candidates'][pred['answer']] == pred['gt']) for pred in pred_answers]
accel.print (f"QBench Accuracy: {np.mean(results)*100} %")
return np.mean(results)*100
def evaluate_mmvet(self, model, accel):
# MM-Vet Evaluation
cur_result = {f"{inputs['id']}": answer for inputs, answer in zip(self.inputs, self.gen_answers)}
pred_pth = os.path.join(self.save_dir, f'{model}_mmvet_results.json')
with open(pred_pth, 'w') as f:
json.dump(cur_result, f, indent=2)
accel.print(f"Finished evaluating MM-Vet. Evaluate the result file saved to {pred_pth}.")
return
def evaluate_mmmu(self, model, accel):
# MMMU Evaluation
predictions = {inputs['id']: answer for inputs, answer in zip(self.inputs, self.gen_answers)}
answers = {inputs['id']: {'ground_truth': inputs['gt'], 'question_type': inputs['question_type']} for inputs, answer in zip(self.inputs, self.gen_answers)}
pred_pth = os.path.join(self.save_dir, f'{model}_mmmu_results.json')
with open(pred_pth, "w") as f:
json.dump(predictions, f, indent=2)
ans_pth = os.path.join(self.save_dir, 'mmmu_answers.json')
with open(ans_pth, "w") as pf:
json.dump(answers, pf, indent=2)
# group by category
output_dict_w_cat = {}
for data_id, parsed_pred in predictions.items():
category = "_".join(data_id.split("_")[1:-1])
if category not in output_dict_w_cat:
output_dict_w_cat.update({category: {}})
output_dict_w_cat[category].update({data_id: parsed_pred})
# group by category
answer_dict_w_cat = {}
for data_id, parsed_pred in answers.items():
category = "_".join(data_id.split("_")[1:-1])
if category not in answer_dict_w_cat:
answer_dict_w_cat.update({category: {}})
answer_dict_w_cat[category].update({data_id: parsed_pred})
evaluation_result = {}
for category in CAT_SHORT2LONG.values():
accel.print("Evaluating: {}".format(category))
# get cat_outputs and cat_answers
try:
cat_outputs = output_dict_w_cat[category]
cat_answers = answer_dict_w_cat[category]
except KeyError:
accel.print("Skipping {} for not found".format(category))
continue
exampels_to_eval = []
for data_id, parsed_pred in cat_outputs.items():
question_type = cat_answers[data_id]['question_type']
if question_type != 'multiple-choice':
parsed_pred = parse_open_response(parsed_pred) # mainly for type consistency (make it number, etc.)
else:
parsed_pred = parsed_pred
exampels_to_eval.append({
"id": data_id,
"question_type": question_type,
"answer": cat_answers[data_id]['ground_truth'],
"parsed_pred": parsed_pred
})
judge_dict, metric_dict = evaluate(exampels_to_eval)
metric_dict.update({"num_example": len(exampels_to_eval)})
evaluation_result[category] = metric_dict
printable_results = {}
# add domain Subject
for domain, in_domain_cats in DOMAIN_CAT2SUB_CAT.items():
in_domain_cat_results = {}
for cat_name in in_domain_cats: # use the order in DOMAIN_CAT2SUB_CAT
if cat_name in evaluation_result.keys():
in_domain_cat_results[cat_name] = evaluation_result[cat_name]
else:
pass
in_domain_ins_acc = calculate_ins_level_acc(in_domain_cat_results)
in_domain_data_num = sum([cat_results['num_example'] for cat_results in in_domain_cat_results.values()])
printable_results['Overall-' + domain] = {"num": int(in_domain_data_num),
"acc": round(in_domain_ins_acc, 3)
}
# add sub category
for cat_name, cat_results in in_domain_cat_results.items():
printable_results[cat_name] = {"num": int(cat_results['num_example']),
"acc": round(cat_results['acc'], 3)
}
# table.append(["-----------------------------", "-----", "----"])
all_ins_acc = calculate_ins_level_acc(evaluation_result)
printable_results['Overall'] = {"num": sum([cat_results['num_example'] for cat_results in evaluation_result.values()]),
"acc": round(all_ins_acc, 3)
}
accel.print(printable_results)
return
def evaluate_mathvista(self, model, accel):
# MathVista Evaluation
pred_answers = [{'pid': inputs['id'], 'image': inputs['id'], 'response': answer,
'question_type': inputs['question_type'], 'answer_type': inputs['answer_type'], 'metadata': inputs['metadata'],
'choices': inputs['choices'], 'query': inputs['question'], 'precision': inputs['precision'],} for inputs, answer in zip(self.inputs, self.gen_answers)]
predictions = {pred['pid']: pred for pred in pred_answers}
pred_pth = os.path.join(self.save_dir, f"{model}_mathvista_results.json")
json.dump(predictions, open(pred_pth, "w"))
accel.print(f"Finished evaluating MathVista. Evaluate the result file saved to {pred_pth}.")
return
def evaluate_ai2d(self, model, accel):
# AI2D Evaluation
pred_answers = [{'question_id': inputs['id'], 'answer': answer, 'gt': inputs['gt']} for inputs, answer in zip(self.inputs, self.gen_answers)]
pred_pth = os.path.join(self.save_dir, f"{model}_ai2d_results.json")
json.dump(pred_answers, open(pred_pth, "w"))
# Compute accuracy
pattern = re.compile(r'[A-Z]')
results = [(char_to_int(pattern.findall(answer)[0]) == inputs['gt']) for inputs, answer in zip(self.inputs, self.gen_answers)]
accel.print(f"AI2D Accuracy: {np.mean(results)*100} %")
return np.mean(results)*100
def evaluate_hallusionbench(self, model, accel):
# HallusionBench Evaluation
pred_answers = [{'answer': '1' if answer.lower().find('yes') != -1 else '0', 'question': inputs['question'], 'gt': inputs['gt']} for inputs, answer in zip(self.inputs, self.gen_answers)]
pred_pth = os.path.join(self.save_dir, f"{model}_hallusionbench_results.json")
json.dump(pred_answers, open(pred_pth, "w"))
# Compute accuracy
results = [(answer['answer'] == answer['gt']) for answer in pred_answers]
accel.print(f"HallusionBench Accuracy: {np.mean(results)*100} %")
return np.mean(results)*100
def evaluate_chartqa(self, model, accel):
# ChartQA Evaluation
# post processing
processed_answers = []
for x in self.gen_answers:
if any(i.isdigit() for i in x):
processed_answers.append(x.split(" ")[0])
else:
processed_answers.append(x)
pred_answers = [{'answer': answer, 'question': inputs['question'], 'annotation': inputs['gt']} for inputs, answer in zip(self.inputs, processed_answers)]
pred_pth = os.path.join(self.save_dir, f"{model}_chartqa_results.json")
json.dump(pred_answers, open(pred_pth, "w"))
# Compute accuracy
acc = evaluate_relaxed_accuracy(pred_answers)
accel.print(f"ChartQA Accuracy: {acc*100}%")
return acc
def evaluate_seed(self, model, accel):
# SEED Evaluation
pred_answers = [{'answer': answer, 'question': inputs['question'], 'question_id': inputs['id'], 'gt': inputs['gt'], 'question_type': inputs['question_type']} for inputs, answer in zip(self.inputs, self.gen_answers)]
pred_pth = os.path.join(self.save_dir, f"{model}_seed_results.json")
json.dump(pred_answers, open(pred_pth, "w"))
# Compute accuracy
results = [(answer['answer'] == answer['gt']) for answer in pred_answers]
accel.print (f"SEED Accuracy: {np.mean(results)*100} %")
# Per question type accuracy
for k, v in SEED_TYPES.items():
sub_results = []
for pred in pred_answers:
if pred['question_type'] == k:
sub_results.append(pred['answer'] == pred['gt'])
accel.print (f"{v}: {np.mean(sub_results)*100} %")
return np.mean(results)*100
def evaluate_llava(self, model, accel):
# LLaVA-in-the-Wild Evaluation
pred_answers = [{'question_id': inputs['id'], 'prompt': inputs['question'], 'text': answer, "answer_id": shortuuid.uuid()} for inputs, answer in zip(self.inputs, self.gen_answers)]
sorted_answers = sorted(pred_answers, key=lambda x: x['question_id'])
pred_pth = os.path.join(self.save_dir, f'{model}_llava_results.jsonl')
ans_file = open(pred_pth, "w")
for pred in sorted_answers:
ans_file.write(json.dumps(pred) + "\n")
ans_file.flush()
ans_file.close()
accel.print(f"Finished evaluating LLaVA-in-the-wild. Evaluate the result file saved to {pred_pth}.")
return
def evaluate_blink(self, model, accel):
# BLINK Evaluation
# TODO
return
def evaluate_mathverse(self, model, accel):
# Mathverse Evaluation
pred_answers = [{'sample_index' : inputs['id'], 'problem_index' : inputs['problem_index'], 'problem_version' : inputs['problem_version'],
'question' : inputs['origin_question'], 'answer' : inputs['gt'],
'question_type': inputs['question_type'], 'question_type': inputs['question_type'],
'metadata': inputs['metadata'], 'query_wo': inputs['question'], 'query_cot' : inputs['query_cot'], 'model_answer' : answer} for inputs, answer in zip(self.inputs, self.gen_answers)]
# answers = [item for item in pred_answers if item['problem_version'] != 'Text_Only']
# text_only_answers = [item for item in pred_answers if item['problem_version'] == 'Text_Only']
pred_pth = os.path.join(self.save_dir, f'{model}_mathverse_results.json')
json.dump(pred_answers, open(pred_pth, "w"))
pred_pth = os.path.join(self.save_dir, f'{model}_mathverse_scores.json')
eval_mathverse(self.save_dir, pred_answers,f'{model}_mathverse_extracts.json', f'{model}_mathverse_scores.json')
accel.print(f"Finished evaluating MathVerse. Evaluate the result file saved to {pred_pth}.")
# TODO
return
def evaluate_mmstar(self, model, accel):
pred_answers = [{'question': inputs['question'],
'answer': inputs['answer'],
'category': inputs['category'],
'l2_category': inputs['l2_category'],
# 'bench': inputs['bench'],
'prediction' : answer} for inputs, answer in zip(self.inputs, self.gen_answers)]
pred_pth = os.path.join(self.save_dir, f'{model}_mmstar_results.json')
json.dump(pred_answers, open(pred_pth, "w"))
df = pd.DataFrame(pred_answers)
eval_mmstar(df, self.save_dir, f'{model}_mmstar_scores.json')
pred_pth = os.path.join(self.save_dir, f'{model}_mmstar_scores.json')
accel.print(f"Finished evaluating MMStar. Evaluate the result file saved to {pred_pth}.")
|