Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import re | |
import json | |
import openai | |
from typing import Dict | |
from tqdm import tqdm | |
import random | |
import numpy as np | |
from sklearn.metrics import accuracy_score, precision_score, recall_score, confusion_matrix | |
from typing import Optional | |
from collections import defaultdict | |
from eval.mathvista.utilities import get_chat_response | |
from config import * | |
from copy import deepcopy | |
random.seed(42) | |
# SEED Question types | |
SEED_TYPES = {1: 'Scene Understanding', 2: 'Instance Identity', 3: 'Instance Location', 4: 'Instance Attributes', 5: 'Instances Counting', 6: 'Spatial Relation', 7: 'Instance Interaction', 8: 'Visual Reasoning', 9: 'Text Understanding'} | |
# Check for duplicated questions, items | |
def remove_duplicate(dataset, inputs, gen_answers): | |
if dataset == "mme": | |
return inputs, gen_answers | |
elif dataset == "pope": | |
questions = set() | |
new_inputs, new_answers = [], [] | |
for i, a in zip(inputs, gen_answers): | |
dup = i['id'], i['category'] | |
if dup in questions: | |
continue | |
questions.add(dup) | |
new_inputs.append(i) | |
new_answers.append(a) | |
else: | |
questions = set() | |
new_inputs, new_answers = [], [] | |
for i, a in zip(inputs, gen_answers): | |
if i['id'] in questions: | |
continue | |
questions.add(i['id']) | |
new_inputs.append(i) | |
new_answers.append(a) | |
return new_inputs, new_answers | |
class EvalAIAnswerProcessor: | |
""" | |
Processes an answer similar to Eval AI | |
copied from | |
https://github.com/facebookresearch/mmf/blob/c46b3b3391275b4181567db80943473a89ab98ab/pythia/tasks/processors.py#L897 | |
""" | |
CONTRACTIONS = { | |
"aint": "ain't", | |
"arent": "aren't", | |
"cant": "can't", | |
"couldve": "could've", | |
"couldnt": "couldn't", | |
"couldn'tve": "couldn't've", | |
"couldnt've": "couldn't've", | |
"didnt": "didn't", | |
"doesnt": "doesn't", | |
"dont": "don't", | |
"hadnt": "hadn't", | |
"hadnt've": "hadn't've", | |
"hadn'tve": "hadn't've", | |
"hasnt": "hasn't", | |
"havent": "haven't", | |
"hed": "he'd", | |
"hed've": "he'd've", | |
"he'dve": "he'd've", | |
"hes": "he's", | |
"howd": "how'd", | |
"howll": "how'll", | |
"hows": "how's", | |
"Id've": "I'd've", | |
"I'dve": "I'd've", | |
"Im": "I'm", | |
"Ive": "I've", | |
"isnt": "isn't", | |
"itd": "it'd", | |
"itd've": "it'd've", | |
"it'dve": "it'd've", | |
"itll": "it'll", | |
"let's": "let's", | |
"maam": "ma'am", | |
"mightnt": "mightn't", | |
"mightnt've": "mightn't've", | |
"mightn'tve": "mightn't've", | |
"mightve": "might've", | |
"mustnt": "mustn't", | |
"mustve": "must've", | |
"neednt": "needn't", | |
"notve": "not've", | |
"oclock": "o'clock", | |
"oughtnt": "oughtn't", | |
"ow's'at": "'ow's'at", | |
"'ows'at": "'ow's'at", | |
"'ow'sat": "'ow's'at", | |
"shant": "shan't", | |
"shed've": "she'd've", | |
"she'dve": "she'd've", | |
"she's": "she's", | |
"shouldve": "should've", | |
"shouldnt": "shouldn't", | |
"shouldnt've": "shouldn't've", | |
"shouldn'tve": "shouldn't've", | |
"somebody'd": "somebodyd", | |
"somebodyd've": "somebody'd've", | |
"somebody'dve": "somebody'd've", | |
"somebodyll": "somebody'll", | |
"somebodys": "somebody's", | |
"someoned": "someone'd", | |
"someoned've": "someone'd've", | |
"someone'dve": "someone'd've", | |
"someonell": "someone'll", | |
"someones": "someone's", | |
"somethingd": "something'd", | |
"somethingd've": "something'd've", | |
"something'dve": "something'd've", | |
"somethingll": "something'll", | |
"thats": "that's", | |
"thered": "there'd", | |
"thered've": "there'd've", | |
"there'dve": "there'd've", | |
"therere": "there're", | |
"theres": "there's", | |
"theyd": "they'd", | |
"theyd've": "they'd've", | |
"they'dve": "they'd've", | |
"theyll": "they'll", | |
"theyre": "they're", | |
"theyve": "they've", | |
"twas": "'twas", | |
"wasnt": "wasn't", | |
"wed've": "we'd've", | |
"we'dve": "we'd've", | |
"weve": "we've", | |
"werent": "weren't", | |
"whatll": "what'll", | |
"whatre": "what're", | |
"whats": "what's", | |
"whatve": "what've", | |
"whens": "when's", | |
"whered": "where'd", | |
"wheres": "where's", | |
"whereve": "where've", | |
"whod": "who'd", | |
"whod've": "who'd've", | |
"who'dve": "who'd've", | |
"wholl": "who'll", | |
"whos": "who's", | |
"whove": "who've", | |
"whyll": "why'll", | |
"whyre": "why're", | |
"whys": "why's", | |
"wont": "won't", | |
"wouldve": "would've", | |
"wouldnt": "wouldn't", | |
"wouldnt've": "wouldn't've", | |
"wouldn'tve": "wouldn't've", | |
"yall": "y'all", | |
"yall'll": "y'all'll", | |
"y'allll": "y'all'll", | |
"yall'd've": "y'all'd've", | |
"y'alld've": "y'all'd've", | |
"y'all'dve": "y'all'd've", | |
"youd": "you'd", | |
"youd've": "you'd've", | |
"you'dve": "you'd've", | |
"youll": "you'll", | |
"youre": "you're", | |
"youve": "you've", | |
} | |
NUMBER_MAP = { | |
"none": "0", | |
"zero": "0", | |
"one": "1", | |
"two": "2", | |
"three": "3", | |
"four": "4", | |
"five": "5", | |
"six": "6", | |
"seven": "7", | |
"eight": "8", | |
"nine": "9", | |
"ten": "10", | |
} | |
ARTICLES = ["a", "an", "the"] | |
PERIOD_STRIP = re.compile(r"(?!<=\d)(\.)(?!\d)") | |
COMMA_STRIP = re.compile(r"(?<=\d)(\,)+(?=\d)") | |
PUNCTUATIONS = [ | |
";", | |
r"/", | |
"[", | |
"]", | |
'"', | |
"{", | |
"}", | |
"(", | |
")", | |
"=", | |
"+", | |
"\\", | |
"_", | |
"-", | |
">", | |
"<", | |
"@", | |
"`", | |
",", | |
"?", | |
"!", | |
] | |
def __init__(self, *args, **kwargs): | |
pass | |
def word_tokenize(self, word): | |
word = word.lower() | |
word = word.replace(",", "").replace("?", "").replace("'s", " 's") | |
return word.strip() | |
def process_punctuation(self, in_text): | |
out_text = in_text | |
for p in self.PUNCTUATIONS: | |
if (p + " " in in_text or " " + p in in_text) or ( | |
re.search(self.COMMA_STRIP, in_text) is not None | |
): | |
out_text = out_text.replace(p, "") | |
else: | |
out_text = out_text.replace(p, " ") | |
out_text = self.PERIOD_STRIP.sub("", out_text, re.UNICODE) | |
return out_text | |
def process_digit_article(self, in_text): | |
out_text = [] | |
temp_text = in_text.lower().split() | |
for word in temp_text: | |
word = self.NUMBER_MAP.setdefault(word, word) | |
if word not in self.ARTICLES: | |
out_text.append(word) | |
else: | |
pass | |
for word_id, word in enumerate(out_text): | |
if word in self.CONTRACTIONS: | |
out_text[word_id] = self.CONTRACTIONS[word] | |
out_text = " ".join(out_text) | |
return out_text | |
def __call__(self, item): | |
item = self.word_tokenize(item) | |
item = item.replace("\n", " ").replace("\t", " ").strip() | |
item = self.process_punctuation(item) | |
item = self.process_digit_article(item) | |
return item | |
class TextVQAAccuracyEvaluator: | |
def __init__(self): | |
self.answer_processor = EvalAIAnswerProcessor() | |
def _compute_answer_scores(self, raw_answers): | |
""" | |
compute the accuracy (soft score) of human answers | |
""" | |
answers = [self.answer_processor(a) for a in raw_answers] | |
assert len(answers) == 10 | |
gt_answers = list(enumerate(answers)) | |
unique_answers = set(answers) | |
unique_answer_scores = {} | |
for unique_answer in unique_answers: | |
accs = [] | |
for gt_answer in gt_answers: | |
other_answers = [item for item in gt_answers if item != gt_answer] | |
matching_answers = [ | |
item for item in other_answers if item[1] == unique_answer | |
] | |
acc = min(1, float(len(matching_answers)) / 3) | |
accs.append(acc) | |
unique_answer_scores[unique_answer] = sum(accs) / len(accs) | |
return unique_answer_scores | |
def eval_pred_list(self, pred_list): | |
pred_scores = [] | |
for entry in pred_list: | |
pred_answer = self.answer_processor(entry["pred_answer"]) | |
unique_answer_scores = self._compute_answer_scores(entry["gt_answers"]) | |
score = unique_answer_scores.get(pred_answer, 0.0) | |
pred_scores.append(score) | |
accuracy = sum(pred_scores) / len(pred_scores) | |
return accuracy | |
# MME | |
class MMEEvaluator: | |
def divide_chunks(self, l, n=2): | |
# looping till length l | |
for i in range(0, len(l), n): | |
yield l[i:i + n] | |
return | |
def parse_pred_ans(self, pred_ans): | |
pred_label = None | |
if pred_ans in ["yes", "no"]: | |
pred_label = pred_ans | |
else: | |
prefix_pred_ans = pred_ans[:4] | |
if "yes" in prefix_pred_ans: | |
pred_label = "yes" | |
elif "no" in prefix_pred_ans: | |
pred_label = "no" | |
else: | |
pred_label = "other" | |
return pred_label | |
def compute_metric(self, gts, preds): | |
assert len(gts) == len(preds) | |
label_map = { | |
"yes": 1, | |
"no": 0, | |
"other": -1, | |
} | |
gts = [label_map[x] for x in gts] | |
preds = [label_map[x] for x in preds] | |
acc = accuracy_score(gts, preds) | |
clean_gts = [] | |
clean_preds = [] | |
other_num = 0 | |
for gt, pred in zip(gts, preds): | |
if pred == -1: | |
other_num += 1 | |
continue | |
clean_gts.append(gt) | |
clean_preds.append(pred) | |
conf_mat = confusion_matrix(clean_gts, clean_preds, labels=[1,0]) | |
precision = precision_score(clean_gts, clean_preds, average='binary') | |
recall = recall_score(clean_gts, clean_preds, average='binary') | |
tp, fn = conf_mat[0] | |
fp, tn = conf_mat[1] | |
metric_dict = dict() | |
metric_dict = { | |
"TP": tp, | |
"FN": fn, | |
"TN": tn, | |
"FP": fp, | |
"precision": precision, | |
"recall": recall, | |
"other_num": other_num, | |
"acc": acc, | |
} | |
return metric_dict | |
def process_result(self, results_dir): | |
eval_type_dict = { | |
"Perception": ["existence", "count", "position", "color", "posters", "celebrity", "scene", "landmark", "artwork", "OCR"], | |
"Cognition": ["commonsense_reasoning", "numerical_calculation", "text_translation", "code_reasoning"] | |
} | |
model_score_dict = dict() | |
for eval_type, task_name_list in eval_type_dict.items(): | |
scores = 0 | |
task_score_dict = dict() | |
for task_name in task_name_list: | |
if not os.path.exists(results_dir): | |
os.makedirs(results_dir) | |
task_txt = os.path.join(results_dir, task_name + ".txt") | |
lines = open(task_txt, 'r').readlines() | |
chunk_lines = list(self.divide_chunks(lines)) # one image corresponds to two questions | |
img_num = len(chunk_lines) | |
task_other_ans_num = 0 | |
task_score = 0 | |
acc_plus_correct_num = 0 | |
gts = [] | |
preds = [] | |
for img_items in chunk_lines: | |
assert len(img_items) == 2 | |
img_correct_num = 0 | |
for img_item in img_items: | |
img_name, question, gt_ans, pred_ans = img_item.split("\t") | |
gt_ans = gt_ans.lower() | |
pred_ans = pred_ans.lower() | |
assert gt_ans in ["yes", "no"] # gt can only be yes or no. | |
pred_ans = self.parse_pred_ans(pred_ans) | |
assert pred_ans in ["yes", "no", "other"] | |
gts.append(gt_ans) | |
preds.append(pred_ans) | |
if gt_ans == pred_ans: | |
img_correct_num += 1 | |
if pred_ans not in ["yes", "no"]: | |
task_other_ans_num += 1 | |
if img_correct_num == 2: | |
acc_plus_correct_num += 1 | |
# cal TP precision acc, etc. | |
metric_dict = self.compute_metric(gts, preds) | |
acc_plus = acc_plus_correct_num / img_num | |
metric_dict["acc_plus"] = acc_plus | |
for k, v in metric_dict.items(): | |
if k in ["acc", "acc_plus"]: | |
task_score += v*100 | |
task_score_dict[task_name] = task_score | |
scores += task_score | |
task_score_dict['total'] = scores | |
model_score_dict[eval_type] = task_score_dict | |
return model_score_dict | |
# For MMMU, convert all <image #> tokens to <image> | |
def replace_image_tokens(question): | |
replaced = set() | |
def replace_token(match): | |
token = match.group(0) | |
if token not in replaced: | |
replaced.add(token) | |
return '<image>' | |
return token | |
pattern = re.compile(r'<image\s\d+>') | |
return pattern.sub(replace_token, question) | |
# For MMMU, count all <image #> tokens | |
def count_unique_image_tokens(string): | |
pattern = r'<image\s\d+>' | |
matches = re.findall(pattern, string) | |
return len(set(matches)) | |
# TextVQA | |
def prompt_processor(self, prompt): | |
if prompt.startswith('OCR tokens: '): | |
pattern = r"Question: (.*?) Short answer:" | |
match = re.search(pattern, prompt, re.DOTALL) | |
question = match.group(1) | |
elif 'Reference OCR token: ' in prompt and len(prompt.split('\n')) == 3: | |
if prompt.startswith('Reference OCR token:'): | |
question = prompt.split('\n')[1] | |
else: | |
question = prompt.split('\n')[0] | |
elif len(prompt.split('\n')) == 2: | |
question = prompt.split('\n')[0] | |
else: | |
assert False | |
return question.lower() | |
# Convert answer to integer | |
def char_to_int(char): | |
return ord(char.upper()) - ord('A') | |
# In case model does not output a single letter, find the choice in answer | |
def convert_to_choice(answer, candidates): | |
options = ["A", "B", "C", "D", "E"] | |
if answer in options: | |
extracted_answer = answer | |
elif len(answer) >= 2 and answer[0] in options and "." in answer: | |
extracted_answer= answer[0] | |
else: | |
pattern = re.compile(r'The answer is ([A-Z]).') | |
res = pattern.findall(answer) | |
if len(res) == 1: | |
extracted_answer = res[0] # 'A', 'B', ... | |
else: | |
extracted_answer = "FAILED" | |
if extracted_answer in options[:len(candidates)]: | |
return options.index(extracted_answer) | |
else: | |
return -1 | |
def get_pred_idx(prediction, choices, options): | |
""" | |
Get the index (e.g. 2) from the prediction (e.g. 'C') | |
""" | |
if prediction in options[:len(choices)]: | |
return options.index(prediction) | |
else: | |
return -1 | |
# Chart QA | |
def relaxed_correctness(target: str, | |
prediction: str, | |
max_relative_change: float = 0.05) -> bool: | |
"""Calculates relaxed correctness. | |
The correctness tolerates certain error ratio defined by max_relative_change. | |
See https://arxiv.org/pdf/2203.10244.pdf, end of section 5.1: | |
“Following Methani et al. (2020), we use a relaxed accuracy measure for the | |
numeric answers to allow a minor inaccuracy that may result from the automatic | |
data extraction process. We consider an answer to be correct if it is within | |
5% of the gold answer. For non-numeric answers, we still need an exact match | |
to consider an answer to be correct.” | |
Args: | |
target: Target string. | |
prediction: Predicted string. | |
max_relative_change: Maximum relative change. | |
Returns: | |
Whether the prediction was correct given the specified tolerance. | |
""" | |
def _to_float(text: str) -> Optional[float]: | |
try: | |
if text.endswith('%'): | |
# Convert percentages to floats. | |
return float(text.rstrip('%')) / 100.0 | |
else: | |
return float(text) | |
except ValueError: | |
return None | |
prediction_float = _to_float(prediction) | |
target_float = _to_float(target) | |
if prediction_float is not None and target_float: | |
relative_change = abs(prediction_float - | |
target_float) / abs(target_float) | |
return relative_change <= max_relative_change | |
else: | |
return prediction.lower() == target.lower() | |
# MME | |
def get_gt(data_path): | |
ground_truth = {} | |
for category in os.listdir(data_path): | |
category_dir = os.path.join(data_path, category) | |
if not os.path.isdir(category_dir): | |
continue | |
if os.path.exists(os.path.join(category_dir, 'images')): | |
image_path = os.path.join(category_dir, 'images') | |
qa_path = os.path.join(category_dir, 'questions_answers_YN') | |
else: | |
image_path = qa_path = category_dir | |
assert os.path.isdir(image_path), image_path | |
assert os.path.isdir(qa_path), qa_path | |
for file in os.listdir(qa_path): | |
if not file.endswith('.txt'): | |
continue | |
for line in open(os.path.join(qa_path, file)): | |
question, answer = line.strip().split('\t') | |
ground_truth[(category, file, question)] = answer | |
return ground_truth | |
# Chart QA | |
def relaxed_correctness(target: str, | |
prediction: str, | |
max_relative_change: float = 0.05) -> bool: | |
"""Calculates relaxed correctness. | |
The correctness tolerates certain error ratio defined by max_relative_change. | |
See https://arxiv.org/pdf/2203.10244.pdf, end of section 5.1: | |
“Following Methani et al. (2020), we use a relaxed accuracy measure for the | |
numeric answers to allow a minor inaccuracy that may result from the automatic | |
data extraction process. We consider an answer to be correct if it is within | |
5% of the gold answer. For non-numeric answers, we still need an exact match | |
to consider an answer to be correct.” | |
Args: | |
target: Target string. | |
prediction: Predicted string. | |
max_relative_change: Maximum relative change. | |
Returns: | |
Whether the prediction was correct given the specified tolerance. | |
""" | |
def _to_float(text: str) -> Optional[float]: | |
try: | |
if text.endswith('%'): | |
# Convert percentages to floats. | |
return float(text.rstrip('%')) | |
else: | |
return float(text) | |
except ValueError: | |
return None | |
prediction_float = _to_float(prediction) | |
target_float = _to_float(target) | |
if prediction_float is not None and target_float: | |
relative_change = abs(prediction_float - | |
target_float) / abs(target_float) | |
return relative_change <= max_relative_change | |
else: | |
return prediction.lower() == target.lower() | |
def evaluate_relaxed_accuracy(entries): | |
scores = [] | |
for elem in entries: | |
if isinstance(elem['annotation'], str): | |
elem['annotation'] = [elem['annotation']] | |
score = max([ | |
relaxed_correctness(elem['answer'].strip(), ann) | |
for ann in elem['annotation'] | |
]) | |
scores.append(score) | |
return sum(scores) / len(scores) | |
# POPE | |
def eval_pope(answers, label_file): | |
label_list = [json.loads(q)['label'] for q in open(label_file, 'r')] | |
for answer in answers: | |
text = answer['answer'].lower() | |
# Only keep the first sentence | |
if text.find('.') != -1: | |
text = text.split('.')[0] | |
text = text.replace(',', '') | |
words = text.split(' ') | |
if 'No' in words or 'not' in words or 'no' in words: | |
answer['answer'] = 'no' | |
else: | |
answer['answer'] = 'yes' | |
for i in range(len(label_list)): | |
if label_list[i] == 'no': | |
label_list[i] = 0 | |
else: | |
label_list[i] = 1 | |
pred_list = [] | |
for answer in answers: | |
if answer['answer'] == 'no': | |
pred_list.append(0) | |
else: | |
pred_list.append(1) | |
pos = 1 | |
neg = 0 | |
TP, TN, FP, FN = 0, 0, 0, 0 | |
for pred, label in zip(pred_list, label_list): | |
if pred == pos and label == pos: | |
TP += 1 | |
elif pred == pos and label == neg: | |
FP += 1 | |
elif pred == neg and label == neg: | |
TN += 1 | |
elif pred == neg and label == pos: | |
FN += 1 | |
acc = (TP + TN) / (TP + TN + FP + FN) | |
return acc | |
# Eval GQA | |
# book to float | |
def toScore(b): | |
return float(1 if b else 0) | |
# Compute average of a list | |
def avg(l): | |
if len(l) == 0: | |
return 0 | |
return float(sum(l)) / len(l) | |
def eval_gqa(predictions, questions): | |
# Initialize data structure to track all metrics: e.g. accuracy, validity and plausibility, as well as | |
# accuracy per question type, length and number of reasoning steps. | |
scores = { | |
"accuracy": [], # list of accuracies per question (1 if correct else 0). Will be averaged ultimately. | |
"binary": [], # list of accuracies per a binary question (1 if correct else 0). Will be averaged ultimately. | |
"open": [], # list of accuracies per an open question (1 if correct else 0). Will be averaged ultimately. | |
"validity": [], # list of validity per question (1 if valid else 0). | |
"plausibility": [], # list of plausibility per question (1 if plausible else 0). | |
"consistency": [], # list of consistency scores for entailed questions. | |
"accuracyPerStructuralType": defaultdict(list), # list of question accuracies for each structural type (e.g. compare, logic questions). | |
"accuracyPerSemanticType": defaultdict(list), # list of question accuracies for each semantic type (e.g. questions about an object, an attribute, a relation). | |
"accuracyPerLength": defaultdict(list), # list of question accuracies per question's word number. | |
"accuracyPerSteps": defaultdict(list), # list of question accuracies per question's reasoning length (steps number). | |
"grounding": [] # list of grounding scores for each question. | |
} | |
# Initialize golden and predicted histograms per each question group. Used to compute the distribution metric. | |
dist = { | |
"gold": defaultdict(lambda: defaultdict(int)), | |
"predicted": defaultdict(lambda: defaultdict(int)) | |
} | |
##### Question lengths - words numbers and reasoning steps number | |
########################################################################################## | |
# Compute question length (words number) | |
def getWordsNum(question): | |
return len(question["question"].split()) | |
# Compute number of reasoning steps (excluding the final "querying" step which doesn't increase effective reasoning length) | |
def getStepsNum(question): | |
return len([c for c in question["semantic"] if not (any([o in "{}: {}".format(c["operation"], c["argument"]) | |
for o in ["exist", "query: name", "choose name"]]))]) | |
##### Main score computation | |
########################################################################################## | |
# Loop over the questions and compute mterics | |
for qid, question in questions.items(): | |
gold = question["answer"] | |
if qid not in predictions: | |
continue | |
predicted = predictions[qid].lower() | |
correct = (predicted == gold) | |
score = toScore(correct) | |
wordsNum = getWordsNum(question) | |
stepsNum = getStepsNum(question) | |
# Compute scores over the balanced dataset (more robust against cheating by making educated guesses) | |
if question["isBalanced"]: | |
# Update accuracy | |
scores["accuracy"].append(score) | |
scores["accuracyPerLength"][wordsNum].append(score) | |
scores["accuracyPerSteps"][stepsNum].append(score) | |
scores["accuracyPerStructuralType"][question["types"]["structural"]].append(score) | |
scores["accuracyPerSemanticType"][question["types"]["semantic"]].append(score) | |
answerType = "open" if question["types"]["structural"] == "query" else "binary" | |
scores[answerType].append(score) | |
# Update histograms for gold and predicted answers | |
globalGroup = question["groups"]["global"] | |
if globalGroup is not None: | |
dist["gold"][globalGroup][gold] += 1 | |
dist["predicted"][globalGroup][predicted] += 1 | |
# Average scores over all questions (in the balanced dataset) and print scores | |
metrics = [ | |
"binary", | |
"open", | |
"accuracy", | |
"consistency", | |
"validity", | |
"plausibility", | |
"grounding", | |
] | |
detailedMetrics = [ | |
("accuracyPerStructuralType", "Accuracy / structural type"), | |
("accuracyPerSemanticType", "Accuracy / semantic type"), | |
("accuracyPerSteps", "Accuracy / steps number"), | |
("accuracyPerLength", "Accuracy / words number") | |
] | |
subMetrics = { | |
"attr": "attribute", | |
"cat": "category", | |
"global": "scene", | |
"obj": "object", | |
"rel": "relation" | |
} | |
# average | |
for k in metrics: | |
if isinstance(scores[k], list): | |
scores[k] = avg(scores[k]) * 100 | |
for k, _ in detailedMetrics: | |
for t in scores[k]: | |
scores[k][t] = avg(scores[k][t]) * 100, len(scores[k][t]) | |
print("") | |
for m in metrics: | |
# skip grounding and consistency scores if not requested | |
if m == "grounding": | |
continue | |
if m == "consistency": | |
continue | |
# print score | |
print("{title}: {score:.2f}{suffix}".format(title = m.capitalize(), score = scores[m], | |
suffix = " (lower is better)" if m == "distribution" else "%")) | |
for m, mPrintName in detailedMetrics: | |
print("") | |
# print metric title | |
print("{}:".format(mPrintName)) | |
for t in sorted(list(scores[m].keys())): | |
# set sub-metric title | |
tName = t | |
if isinstance(scores[k], list): | |
tName = subMetrics.get(t, t).capitalize() | |
# print score | |
print(" {title}: {score:.2f}{suffix} ({amount} questions)".format(title = tName, | |
score = scores[m][t][0], suffix = "%", amount = scores[m][t][1])) | |
return scores | |
# MMMU | |
DOMAIN_CAT2SUB_CAT = { | |
'Art and Design': ['Art', 'Art_Theory', 'Design', 'Music'], | |
'Business': ['Accounting', 'Economics', 'Finance', 'Manage','Marketing'], | |
'Science': ['Biology', 'Chemistry', 'Geography', 'Math', 'Physics',], | |
'Health and Medicine': ['Basic_Medical_Science', 'Clinical_Medicine', 'Diagnostics_and_Laboratory_Medicine', 'Pharmacy', 'Public_Health'], | |
'Humanities and Social Science': ['History', 'Literature', 'Sociology', 'Psychology'], | |
'Tech and Engineering': ['Agriculture', 'Architecture_and_Engineering', 'Computer_Science', 'Electronics', 'Energy_and_Power', 'Materials', 'Mechanical_Engineering'], | |
} | |
CAT_SHORT2LONG = { | |
'acc': 'Accounting', | |
'agri': 'Agriculture', | |
'arch': 'Architecture_and_Engineering', | |
'art': 'Art', | |
'art_theory': 'Art_Theory', | |
'bas_med': 'Basic_Medical_Science', | |
'bio': 'Biology', | |
'chem': 'Chemistry', | |
'cli_med': 'Clinical_Medicine', | |
'cs': 'Computer_Science', | |
'design': 'Design', | |
'diag_med': 'Diagnostics_and_Laboratory_Medicine', | |
'econ': 'Economics', | |
'elec': 'Electronics', | |
'ep': 'Energy_and_Power', | |
'fin': 'Finance', | |
'geo': 'Geography', | |
'his': 'History', | |
'liter': 'Literature', | |
'manage': 'Manage', | |
'mark': 'Marketing', | |
'mate': 'Materials', | |
'math': 'Math', | |
'mech': 'Mechanical_Engineering', | |
'music': 'Music', | |
'phar': 'Pharmacy', | |
'phys': 'Physics', | |
'psy': 'Psychology', | |
'pub_health': 'Public_Health', | |
'socio': 'Sociology' | |
} | |
"""Response Parsing and Evaluation for various models""" | |
# ----------- Process Multi-choice ------------- | |
def parse_multi_choice_response(response, all_choices, index2ans): | |
""" | |
Parse the prediction from the generated response. | |
Return the predicted index e.g., A, B, C, D. | |
""" | |
for char in [',', '.', '!', '?', ';', ':', "'"]: | |
response = response.strip(char) | |
response = " " + response + " " # add space to avoid partial match | |
index_ans = True | |
ans_with_brack = False | |
candidates = [] | |
for choice in all_choices: # e.g., (A) (B) (C) (D) | |
if f'({choice})' in response: | |
candidates.append(choice) | |
ans_with_brack = True | |
if len(candidates) == 0: | |
for choice in all_choices: # e.g., A B C D | |
if f' {choice} ' in response: | |
candidates.append(choice) | |
# if all above doesn't get candidates, check if the content is larger than 5 tokens and try to parse the example | |
if len(candidates) == 0 and len(response.split()) > 5: | |
for index, ans in index2ans.items(): | |
if ans.lower() in response.lower(): | |
candidates.append(index) | |
index_ans = False # it's content ans. | |
if len(candidates) == 0: # still not get answer, randomly choose one. | |
pred_index = random.choice(all_choices) | |
elif len(candidates) > 1: | |
start_indexes = [] | |
if index_ans: | |
if ans_with_brack: | |
for can in candidates: | |
index = response.rfind(f'({can})') | |
start_indexes.append(index) # -1 will be ignored anyway | |
# start_indexes = [generated_response.index(f'({can})') for can in candidates] | |
else: | |
for can in candidates: | |
index = response.rfind(f" {can} ") | |
start_indexes.append(index) | |
else: | |
for can in candidates: | |
index = response.lower().rfind(index2ans[can].lower()) | |
start_indexes.append(index) | |
# get the last one | |
pred_index = candidates[np.argmax(start_indexes)] | |
else: # if only one candidate, use it. | |
pred_index = candidates[0] | |
return pred_index | |
# ----------- Process Open ------------- | |
def check_is_number(string): | |
""" | |
Check if the given string a number. | |
""" | |
try: | |
float(string.replace(',', '')) | |
return True | |
except ValueError: | |
# check if there's comma inside | |
return False | |
def normalize_str(string): | |
""" | |
Normalize the str to lower case and make them float numbers if possible. | |
""" | |
# check if characters in the string | |
# if number, numerize it. | |
string = string.strip() | |
is_number = check_is_number(string) | |
if is_number: | |
string = string.replace(',', '') | |
string = float(string) | |
# leave 2 decimal | |
string = round(string, 2) | |
return [string] | |
else: # it's likely to be a string | |
# lower it | |
string = string.lower() | |
if len(string) == 1: | |
return [" " + string, string + " "] # avoid trivial matches | |
return [string] | |
def extract_numbers(string): | |
""" | |
Exact all forms of numbers from a string with regex. | |
""" | |
# Pattern for numbers with commas | |
pattern_commas = r'-?\b\d{1,3}(?:,\d{3})+\b' | |
# Pattern for scientific notation | |
pattern_scientific = r'-?\d+(?:\.\d+)?[eE][+-]?\d+' | |
# Pattern for simple numbers without commas | |
pattern_simple = r'-?(?:\d+\.\d+|\.\d+|\d+\b)(?![eE][+-]?\d+)(?![,\d])' | |
# Extract numbers with commas | |
numbers_with_commas = re.findall(pattern_commas, string) | |
# Extract numbers in scientific notation | |
numbers_scientific = re.findall(pattern_scientific, string) | |
# Extract simple numbers without commas | |
numbers_simple = re.findall(pattern_simple, string) | |
# Combine all extracted numbers | |
all_numbers = numbers_with_commas + numbers_scientific + numbers_simple | |
return all_numbers | |
def parse_open_response(response): | |
""" | |
Parse the prediction from the generated response. | |
Return a list of predicted strings or numbers. | |
""" | |
# content = content.strip("\n").strip(".").strip(" ") | |
def get_key_subresponses(response): | |
key_responses = [] | |
response = response.strip().strip(".").lower() | |
sub_responses = re.split(r'\.\s(?=[A-Z])|\n', response) | |
indicators_of_keys = ['could be ', 'so ', 'is ', | |
'thus ', 'therefore ', 'final ', 'answer ', 'result '] | |
key_responses = [] | |
for index, resp in enumerate(sub_responses): | |
# if last one, accept it's an equation (the entire response can be just one sentence with equation) | |
if index == len(sub_responses) - 1: | |
indicators_of_keys.extend(['=']) | |
shortest_key_response = None # the shortest response that may contain the answer (tail part of the response) | |
for indicator in indicators_of_keys: | |
if indicator in resp: | |
if not shortest_key_response: | |
shortest_key_response = resp.split(indicator)[-1].strip() | |
else: | |
if len(resp.split(indicator)[-1].strip()) < len(shortest_key_response): | |
shortest_key_response = resp.split(indicator)[-1].strip() | |
# key_responses.append(resp.split(indicator)[1].strip()) | |
if shortest_key_response: | |
# and it's not trivial | |
if shortest_key_response.strip() not in [":", ",", ".", "!", "?", ";", ":", "'"]: | |
key_responses.append(shortest_key_response) | |
if len(key_responses) == 0: # did not found any | |
return [response] | |
return key_responses | |
# pdb.set_trace() | |
key_responses = get_key_subresponses(response) | |
pred_list = key_responses.copy() # keep the original string response | |
for resp in key_responses: | |
pred_list.extend(extract_numbers(resp)) | |
tmp_pred_list = [] | |
for i in range(len(pred_list)): | |
tmp_pred_list.extend(normalize_str(pred_list[i])) | |
pred_list = tmp_pred_list | |
# remove duplicates | |
pred_list = list(set(pred_list)) | |
return pred_list | |
# ----------- Evaluation ------------- | |
def eval_multi_choice(gold_i, pred_i): | |
""" | |
Evaluate a multiple choice instance. | |
""" | |
correct = False | |
# only they are exactly the same, we consider it as correct | |
if isinstance(gold_i, list): | |
for answer in gold_i: | |
if answer == pred_i: | |
correct = True | |
break | |
else: # gold_i is a string | |
if gold_i == pred_i: | |
correct = True | |
return correct | |
def eval_open(gold_i, pred_i): | |
""" | |
Evaluate an open question instance | |
""" | |
correct = False | |
if isinstance(gold_i, list): | |
# use float to avoid trivial matches | |
norm_answers = [] | |
for answer in gold_i: | |
norm_answers.extend(normalize_str(answer)) | |
else: | |
norm_answers = normalize_str(gold_i) | |
for pred in pred_i: # pred is already normalized in parse response phase | |
if isinstance(pred, str): # if it's a string, then find if ans in the pred_i | |
for norm_ans in norm_answers: | |
# only see if the string answer in the string pred | |
if isinstance(norm_ans, str) and norm_ans in pred: | |
if not correct: | |
correct = True | |
break | |
else: # it's a float number | |
if pred in norm_answers: | |
if not correct: | |
correct = True | |
break | |
return correct | |
# ----------- Batch Evaluation ------------- | |
def evaluate(samples): | |
""" | |
Batch evaluation for multiple choice and open questions. | |
""" | |
pred_correct = 0 | |
judge_dict = dict() | |
for sample in samples: | |
gold_i = sample['answer'] | |
pred_i = sample['parsed_pred'] | |
if sample['question_type'] == 'multiple-choice': | |
correct = eval_multi_choice(gold_i, pred_i) | |
else: # open question | |
correct = eval_open(gold_i, pred_i) | |
if correct: | |
judge_dict[sample['id']] = 'Correct' | |
pred_correct += 1 | |
else: | |
judge_dict[sample['id']] = 'Wrong' | |
if len(samples) == 0: | |
return {'acc': 0} | |
return judge_dict, {'acc': pred_correct / len(samples)} | |
# ----------- Calculate Accuracy ------------- | |
def calculate_ins_level_acc(results: Dict): | |
"""Calculate the instruction level accuracy for given Subject results""" | |
acc = 0 | |
ins_num = 0 | |
for cat_results in results.values(): | |
acc += cat_results['acc'] * cat_results['num_example'] | |
ins_num += cat_results['num_example'] | |
if ins_num == 0: | |
return 0 | |
return acc / ins_num | |
def eval_mathverse(output_dir, results, extract_file, score_file): | |
openai.api_key = OPENAI_KEY | |
demo_prompt_extract = """ | |
I am providing you a response from a model to a math problem, termed 'Model Response'. You should extract the answer from the response as 'Extracted Answer'. Directly output the extracted answer with no explanation. | |
1. | |
Model response: 'Rounded to two decimal places, the perimeter of the sector is approximately:\n\n(-2, 1)' | |
Extracted Answer: (-2, 1) | |
2. | |
Model response: 'at those points.\n\nTherefore, the correct option that represents the meaning of the intersection points of the graphs is:\n\nD. They give the solutions to the equation $f(t)=g(t)$.",' | |
Extracted Answer: D | |
3. | |
Model response: ' at 1 (there's a closed circle at y = 1), the range in interval notation is \\((-4, 1]\\).\n\nFinal values:\nDomain: \\((-3, 3]\\)\nRange: \\((-4, 1]\\)' | |
Extracted Answer: Domain: \\((-3, 3]\\)\nRange: \\((-4, 1]\\) | |
4. | |
Model response: 'As it stands, I cannot provide the correct option letter because there isn't enough information to solve for 'y'.' | |
Extracted Answer: null | |
5. | |
Model response: 'Given that AB = 17.6 meters, we can now substitute into the equation:\n\nd = 17.6 / cos(38\u00b0)\n\nTherefore, to one decimal place, the distance d between Ned and Bart is approximately 22.3 meters.' | |
Extracted answer: 22.3 | |
6. | |
Model response: have all the coefficients for the quadratic function:\n\\( f(x) = ax^2 + bx + c \\)\n\\( f(x) = -1x^2 - 2x + 1 \\)\n\nTherefore, the equation for the graphed function \\( f \\) is:\n\\( f(x) = -x^2 - 2x + 1 \\)"' | |
Extracted answer: f(x) = -x^2 - 2x + 1 | |
7. | |
""" | |
demo_prompt_score = """ | |
Below are two answers to a math question. Question is [Question], [Standard Answer] is the standard answer to the question, and [Model_answer] is the answer extracted from a model's output to this question. Determine whether these two answers are consistent. | |
Please note that only when the [Model_answer] completely matches the [Standard Answer] means they are consistent. For non-multiple-choice questions, if the meaning is expressed in the same way, it is also considered consistent, for example, 0.5m and 50cm. | |
If they are consistent, Judement is 1; if they are different, Judement is 0. | |
[Question]: Write the set of numbers represented on the number line in interval notation. | |
[Standard Answer]: (-2,1] | |
[Model_answer] : Extracted Answer: \\((-2, 1)\\) | |
Judgement: 0 | |
[Question]: As shown in the figure, circle O has a radius 1.0, if angle BAC = 60.0, then the length of BC is ()\nChoices:\nA:2\nB:2\u221a{{3}}\nC:\u221a{{3}}\nD:2\u221a{{2}} | |
[Standard Answer]: C | |
[Model_answer] : B:2\u221a{{3}} | |
Judgement: 0 | |
[Question]: Find the domain and range of the function f using interval notation. | |
[Standard Answer]: domain: [-4, 0) and range: (-3, 1] | |
[Model_answer] : Range: \\((-4, 1]\\) | |
Judgement: 0 | |
[Question]: As shown in the figure, circle O has a radius 1.0, if angle BAC = 60.0, then the length of BC is ()\nChoices:\nA:2\nB:2\u221a{{3}}\nC:\u221a{{3}}\nD:2\u221a{{2}} | |
[Standard Answer]: C | |
[Model_answer] : null | |
Judgement: 0 | |
[Question]: Given the graph of the ellipse that intersects with x-axis at 9 and -9 and with y-axis at 3 and -3, determine its equation.A. \\frac{{x^2}}{{81}} + \\frac{{y^2}}{{9}} = 1 B. Can not determine.\n | |
[Standard Answer]: A | |
[Model_answer] : \\frac{{x^2}}{{81}} + \\frac{{y^2}}{{9}} = 1 | |
Judgement: 1 | |
[Question]: {question} | |
[Standard Answer]: {gt} | |
[Model_answer] : {extraction} | |
Judgement: """ | |
def create_extract_prompt(demo_prompt, response, inst): | |
demo_prompt = demo_prompt.strip() | |
test_prompt = f"Model response: '{response}'\nExtracted Answer: " | |
full_prompt = f"{demo_prompt}\n\n{test_prompt}" | |
return full_prompt | |
def create_scoring_prompt(demo_prompt, inst): | |
demo_prompt = demo_prompt.strip() | |
full_prompt = demo_prompt.format(question = inst['question'], gt=inst['answer'], extraction=inst['extraction']) | |
return full_prompt | |
def extract_answer(response, inst, api_key): | |
# general extraction | |
try: | |
full_prompt = create_extract_prompt(demo_prompt_extract, response, inst) | |
extraction = get_chat_response(full_prompt, api_key) | |
return extraction | |
except Exception as e: | |
print(e) | |
print(f"Error in extracting answer for {response}") | |
return "" | |
def match_answer(inst, api_key): | |
try: | |
full_prompt = create_scoring_prompt(demo_prompt_score, inst) | |
extraction = get_chat_response(full_prompt, api_key) | |
return extraction.replace("Judgement:", "").strip() | |
except Exception as e: | |
print(e) | |
print(f"Error in matching answer") | |
return "" | |
save_results = [] | |
score_dict = defaultdict(lambda: defaultdict(list)) | |
score_version_dict = defaultdict(list) | |
for i, inst in enumerate(tqdm(results)): | |
response = inst['model_answer'] | |
extraction = extract_answer(response, inst, OPENAI_KEY) | |
inst['extraction'] = extraction.replace('Extracted Answer: ', '').strip() | |
judgement = match_answer(inst, OPENAI_KEY) | |
while True: | |
if judgement.strip() not in ['0', '1']: | |
print('Wrong return format: ', judgement) | |
judgement = match_answer(inst, OPENAI_KEY) | |
else: | |
inst['judgement'] = int(judgement) | |
break | |
save_results.append(inst) | |
score_dict[inst['metadata']['subject']][inst['metadata']['subfield']].append(inst['judgement']) | |
score_version_dict[inst['problem_version']].append(inst['judgement']) | |
results_file = os.path.join(output_dir, extract_file) | |
with open(results_file, 'w') as f: | |
json.dump(save_results, f, indent=4) | |
print(f"Save MathVerse Results at {results_file}") | |
save_json = {} | |
# version level acc | |
total_cnt, right_cnt = 0, 0 | |
for version in score_version_dict: | |
version_total_cnt = len(score_version_dict[version]) | |
version_right_cnt = len([inst for inst in score_version_dict[version] if inst == 1]) | |
total_cnt += version_total_cnt | |
right_cnt += version_right_cnt | |
print(f"{version} Acc: {(version_right_cnt/version_total_cnt):.3f}") | |
save_json[version] = f"{(version_right_cnt/version_total_cnt):.3f}" | |
print(f"Acc: {(right_cnt/total_cnt):.3f}") | |
save_json["Total Acc"] = f"{(right_cnt/total_cnt):.3f}" | |
scores_file = os.path.join(output_dir, score_file) | |
with open(scores_file, 'w') as f: | |
json.dump(save_json, f, indent=4) | |
def eval_mmstar(eval_file, output_dir, score_file): | |
MMStar_score_l2 = { | |
'coarse perception': { | |
'image scene and topic': 0, | |
'image style & quality': 0, | |
'image emotion': 0 | |
}, | |
'fine-grained perception': { | |
'object counting': 0, | |
'recognition': 0, | |
'localization': 0 | |
}, | |
'instance reasoning': { | |
'single-instance reasoning': 0, | |
'cross-instance attribute reasoning': 0, | |
'cross-instance relation reasoning': 0 | |
}, | |
'logical reasoning': { | |
'code & sequence reasoning': 0, | |
'diagram reasoning': 0, | |
'common reasoning': 0 | |
}, | |
'science & technology': { | |
'biology & chemistry & physics': 0, | |
'electronics & energy & mechanical eng.': 0, | |
'geography & earth science & agriculture': 0 | |
}, | |
'math': { | |
'geometry': 0, | |
'numeric commonsense and calculation': 0, | |
'statistical reasoning': 0 | |
}, | |
} | |
MMStar_counter = deepcopy(MMStar_score_l2) | |
data = eval_file | |
lt = len(data) | |
lines = [data.iloc[i] for i in range(lt)] | |
for i in tqdm(range(len(lines))): | |
line = lines[i] | |
predict = str(line['prediction']) | |
answers = str(line['answer']) | |
# ori_bench = str(line['bench']) | |
category = str(line['category']) | |
l2_category = str(line['l2_category']) | |
MMStar_counter[category][l2_category] += 1 | |
answer = answers.lower().strip().replace('\n', ' ') | |
predict = predict.lower().strip().replace('\n', ' ') | |
# if ori_bench == 'MathVista' and answer not in ['a', 'b', 'c', 'd']: | |
# if answer in predict: | |
# MMStar_score_l2[category][l2_category] += 1 | |
# else: | |
try: | |
if answer == predict[0]: | |
MMStar_score_l2[category][l2_category] += 1 | |
elif predict[0] == '(' and answer == predict[1]: | |
MMStar_score_l2[category][l2_category] += 1 | |
elif predict[0:7] == 'option ' and answer == predict[7]: | |
MMStar_score_l2[category][l2_category] += 1 | |
elif predict[0:14] == 'the answer is ' and answer == predict[14]: | |
MMStar_score_l2[category][l2_category] += 1 | |
except Exception as e: | |
pass | |
MMStar_score = {} | |
MMStar_score['final score'] = 0 | |
for k, v in MMStar_score_l2.items(): | |
MMStar_score[k] = 0 | |
for l2_k, l2_v in v.items(): | |
if float(MMStar_counter[k][l2_k]) == 0: | |
MMStar_score[f'{k}({l2_k})'] = 0 | |
else: | |
MMStar_score[f'{k}({l2_k})'] = float(l2_v) / \ | |
float(MMStar_counter[k][l2_k]) | |
MMStar_score[k] += l2_v | |
MMStar_score['final score'] += MMStar_score[k] | |
MMStar_score[k] = float(MMStar_score[k]) / 250.0 | |
MMStar_score['final score'] = float(MMStar_score['final score']) / 1500.0 | |
score_pth = os.path.join(output_dir, score_file) | |
with open(score_pth, 'w') as f: | |
json.dump(MMStar_score, f, indent=4) | |
print( | |
f'MMStar_eval successfully finished evaluating {eval_file}, results saved in {score_pth}') | |
print('Score: ') | |
for key, value in MMStar_score.items(): | |
print('{}:{}'.format(key, value)) | |