Spaces:
Running
on
Zero
Running
on
Zero
# # Copyright (c) InternLM. All rights reserved. | |
# | |
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | |
# and OPT implementations in this library. It has been modified from its | |
# original forms to accommodate minor architectural differences compared | |
# to GPT-NeoX and OPT used by the Meta AI team that trained the model. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch InternLM2 model.""" | |
import math | |
import warnings | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from einops import rearrange | |
from torch import nn | |
from transformers.activations import ACT2FN | |
from transformers.modeling_outputs import BaseModelOutputWithPast | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import (add_start_docstrings, | |
add_start_docstrings_to_model_forward, logging) | |
try: | |
from transformers.generation.streamers import BaseStreamer | |
except: # noqa # pylint: disable=bare-except | |
BaseStreamer = None | |
from .build_module import LoRA | |
from .configuration_internlm2 import InternLM2Config | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = 'InternLM2Config' | |
flash_attn_func, flash_attn_varlen_func = None, None | |
pad_input, index_first_axis, unpad_input = None, None, None | |
def _import_flash_attn(): | |
global flash_attn_func, flash_attn_varlen_func | |
global pad_input, index_first_axis, unpad_input | |
try: | |
from flash_attn import flash_attn_func as _flash_attn_func, flash_attn_varlen_func as _flash_attn_varlen_func | |
from flash_attn.bert_padding import pad_input as _pad_input, index_first_axis as _index_first_axis, unpad_input as _unpad_input | |
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func | |
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input | |
except ImportError: | |
raise ImportError("flash_attn is not installed.") | |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data | |
def _get_unpad_data(attention_mask): | |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | |
max_seqlen_in_batch = seqlens_in_batch.max().item() | |
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) | |
return ( | |
indices, | |
cu_seqlens, | |
max_seqlen_in_batch, | |
) | |
# Copied from transformers.models.bart.modeling_bart._make_causal_mask | |
def _make_causal_mask(input_ids_shape: torch.Size, | |
dtype: torch.dtype, | |
device: torch.device, | |
past_key_values_length: int = 0): | |
"""Make causal mask used for bi-directional self-attention.""" | |
bsz, tgt_len = input_ids_shape | |
mask = torch.full((tgt_len, tgt_len), | |
torch.tensor(torch.finfo(dtype).min, device=device), | |
device=device) | |
mask_cond = torch.arange(mask.size(-1), device=device) | |
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) | |
mask = mask.to(dtype) | |
if past_key_values_length > 0: | |
mask = torch.cat([ | |
torch.zeros( | |
tgt_len, past_key_values_length, dtype=dtype, device=device), | |
mask | |
], | |
dim=-1) | |
return mask[None, None, :, :].expand(bsz, 1, tgt_len, | |
tgt_len + past_key_values_length) | |
# Copied from transformers.models.bart.modeling_bart._expand_mask | |
def _expand_mask(mask: torch.Tensor, | |
dtype: torch.dtype, | |
tgt_len: Optional[int] = None): | |
"""Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, | |
src_seq_len]`.""" | |
bsz, src_len = mask.size() | |
tgt_len = tgt_len if tgt_len is not None else src_len | |
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, | |
src_len).to(dtype) | |
inverted_mask = 1.0 - expanded_mask | |
return inverted_mask.masked_fill( | |
inverted_mask.to(torch.bool), | |
torch.finfo(dtype).min) | |
class InternLM2RMSNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
"""InternLM2RMSNorm is equivalent to T5LayerNorm.""" | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
input_dtype = hidden_states.dtype | |
hidden_states = hidden_states.to(torch.float32) | |
variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + | |
self.variance_epsilon) | |
return self.weight * hidden_states.to(input_dtype) | |
class InternLM2RotaryEmbedding(nn.Module): | |
def __init__(self, | |
dim, | |
max_position_embeddings=2048, | |
base=10000, | |
device=None): | |
super().__init__() | |
self.dim = dim | |
self.max_position_embeddings = max_position_embeddings | |
self.base = base | |
inv_freq = 1.0 / ( | |
self.base | |
**(torch.arange(0, self.dim, 2).float().to(device) / self.dim)) | |
self.register_buffer('inv_freq', inv_freq, persistent=False) | |
# Build here to make `torch.jit.trace` work. | |
self._set_cos_sin_cache( | |
seq_len=max_position_embeddings, | |
device=self.inv_freq.device, | |
dtype=torch.get_default_dtype()) | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
self.max_seq_len_cached = seq_len | |
t = torch.arange( | |
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | |
freqs = torch.einsum('i,j->ij', t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer( | |
'cos_cached', emb.cos().to(dtype), persistent=False) | |
self.register_buffer( | |
'sin_cached', emb.sin().to(dtype), persistent=False) | |
def forward(self, x, seq_len=None): | |
# x: [bs, num_attention_heads, seq_len, head_size] | |
if seq_len > self.max_seq_len_cached: | |
self._set_cos_sin_cache( | |
seq_len=seq_len, device=x.device, dtype=x.dtype) | |
return ( | |
self.cos_cached[:seq_len].to(dtype=x.dtype), | |
self.sin_cached[:seq_len].to(dtype=x.dtype), | |
) | |
class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding): | |
"""InternLM2RotaryEmbedding extended with linear scaling. | |
Credits to the Reddit user /u/kaiokendev | |
""" | |
def __init__(self, | |
dim, | |
max_position_embeddings=2048, | |
base=10000, | |
device=None, | |
scaling_factor=1.0): | |
self.scaling_factor = scaling_factor | |
super().__init__(dim, max_position_embeddings, base, device) | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
self.max_seq_len_cached = seq_len | |
t = torch.arange( | |
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | |
t = t / self.scaling_factor | |
freqs = torch.einsum('i,j->ij', t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer( | |
'cos_cached', emb.cos().to(dtype), persistent=False) | |
self.register_buffer( | |
'sin_cached', emb.sin().to(dtype), persistent=False) | |
class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding): | |
"""InternLM2RotaryEmbedding extended with Dynamic NTK scaling. | |
Credits to the Reddit users /u/bloc97 and /u/emozilla. | |
""" | |
def __init__(self, | |
dim, | |
max_position_embeddings=2048, | |
base=10000, | |
device=None, | |
scaling_factor=1.0): | |
self.scaling_factor = scaling_factor | |
super().__init__(dim, max_position_embeddings, base, device) | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
self.max_seq_len_cached = seq_len | |
if seq_len > self.max_position_embeddings: | |
base = self.base * ((self.scaling_factor * seq_len / | |
self.max_position_embeddings) - | |
(self.scaling_factor - 1))**( | |
self.dim / (self.dim - 2)) | |
inv_freq = 1.0 / ( | |
base | |
**(torch.arange(0, self.dim, 2).float().to(device) / self.dim)) | |
self.register_buffer('inv_freq', inv_freq, persistent=False) | |
t = torch.arange( | |
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | |
freqs = torch.einsum('i,j->ij', t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer( | |
'cos_cached', emb.cos().to(dtype), persistent=False) | |
self.register_buffer( | |
'sin_cached', emb.sin().to(dtype), persistent=False) | |
def rotate_half(x): | |
"""Rotates half the hidden dims of the input.""" | |
x1 = x[..., :x.shape[-1] // 2] | |
x2 = x[..., x.shape[-1] // 2:] | |
return torch.cat((-x2, x1), dim=-1) | |
# def apply_rotary_pos_emb(q, k, cos, sin, position_ids): | |
# # The first two dimensions of cos and sin are always 1, so we can `squeeze` them. | |
# cos = cos.squeeze(1).squeeze(0) # [seq_len, dim] | |
# sin = sin.squeeze(1).squeeze(0) # [seq_len, dim] | |
# cos = cos.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1) | |
# sin = sin.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1) | |
# if q.size(2) == 1: | |
# q_embed = (q * cos[:, :, -1:, :]) + ( | |
# rotate_half(q) * sin[:, :, -1:, :]) | |
# else: | |
# q_embed = (q * cos) + (rotate_half(q) * sin) | |
# if k.size(2) == 1: | |
# k_embed = (k * cos[:, :, -1:, :]) + ( | |
# rotate_half(k) * sin[:, :, -1:, :]) | |
# else: | |
# k_embed = (k * cos) + (rotate_half(k) * sin) | |
# return q_embed, k_embed | |
# Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb | |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): | |
"""Applies Rotary Position Embedding to the query and key tensors.""" | |
cos = cos[position_ids].unsqueeze(unsqueeze_dim) | |
sin = sin[position_ids].unsqueeze(unsqueeze_dim) | |
q_embed = (q * cos) + (rotate_half(q) * sin) | |
k_embed = (k * cos) + (rotate_half(k) * sin) | |
return q_embed, k_embed | |
class InternLM2MLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.hidden_size = config.hidden_size | |
self.intermediate_size = config.intermediate_size | |
self.w1 = LoRA( | |
self.hidden_size, | |
self.intermediate_size, | |
bias=False, | |
lora_r=256, | |
lora_alpha=256, | |
lora_len=576) | |
self.w3 = LoRA( | |
self.hidden_size, | |
self.intermediate_size, | |
bias=False, | |
lora_r=256, | |
lora_alpha=256, | |
lora_len=576) | |
self.w2 = LoRA( | |
self.intermediate_size, | |
self.hidden_size, | |
bias=False, | |
lora_r=256, | |
lora_alpha=256, | |
lora_len=576) | |
self.act_fn = ACT2FN[config.hidden_act] | |
def forward(self, x, im_mask): | |
down_proj = self.w2( | |
self.act_fn(self.w1(x, im_mask)) * self.w3(x, im_mask), im_mask) | |
return down_proj | |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
"""This is the equivalent of torch.repeat_interleave(x, dim=1, | |
repeats=n_rep). | |
The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to | |
(batch, num_attention_heads, seqlen, head_dim) | |
""" | |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
if n_rep == 1: | |
return hidden_states | |
hidden_states = hidden_states[:, :, | |
None, :, :].expand(batch, | |
num_key_value_heads, | |
n_rep, slen, head_dim) | |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, | |
head_dim) | |
class InternLM2Attention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper.""" | |
def __init__(self, config: InternLM2Config): | |
super().__init__() | |
self.config = config | |
self.hidden_size = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.hidden_size // self.num_heads | |
self.num_key_value_heads = config.num_key_value_heads | |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads | |
self.max_position_embeddings = config.max_position_embeddings | |
self.is_causal = True | |
if (self.head_dim * self.num_heads) != self.hidden_size: | |
raise ValueError( | |
f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}' | |
f' and `num_heads`: {self.num_heads}).') | |
self.wqkv = LoRA( | |
self.hidden_size, | |
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim, | |
bias=config.bias, | |
lora_r=256, | |
lora_alpha=256, | |
lora_len=576) | |
self.wo = LoRA( | |
self.num_heads * self.head_dim, | |
self.hidden_size, | |
bias=config.bias, | |
lora_r=256, | |
lora_alpha=256, | |
lora_len=576) | |
self._init_rope() | |
def _init_rope(self): | |
if self.config.rope_scaling is None: | |
self.rotary_emb = InternLM2RotaryEmbedding( | |
self.head_dim, | |
max_position_embeddings=self.max_position_embeddings, | |
base=self.config.rope_theta, | |
) | |
else: | |
scaling_type = self.config.rope_scaling['type'] | |
scaling_factor = self.config.rope_scaling['factor'] | |
if scaling_type == 'dynamic': | |
self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding( | |
self.head_dim, | |
max_position_embeddings=self.max_position_embeddings, | |
base=self.config.rope_theta, | |
scaling_factor=scaling_factor) | |
else: | |
raise ValueError( | |
"Currently we only support rotary embedding's type being 'dynamic'." | |
) | |
return self.rotary_emb | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, | |
self.head_dim).transpose(1, 2).contiguous() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
im_mask: Optional[Tuple[torch.Tensor]] = None, | |
**kwargs, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], | |
Optional[Tuple[torch.Tensor]]]: | |
if 'padding_mask' in kwargs: | |
warnings.warn( | |
'Passing `padding_mask` is deprecated and will be removed in v4.37. ' | |
'Please make sure use `attention_mask` instead.`') | |
bsz, q_len, _ = hidden_states.size() | |
qkv_states = self.wqkv(hidden_states, im_mask) | |
qkv_states = rearrange( | |
qkv_states, | |
'b q (h gs d) -> b q h gs d', | |
gs=2 + self.num_key_value_groups, | |
d=self.head_dim, | |
) | |
query_states = qkv_states[..., :self.num_key_value_groups, :] | |
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d') | |
key_states = qkv_states[..., -2, :] | |
value_states = qkv_states[..., -1, :] | |
query_states = query_states.transpose(1, 2) | |
key_states = key_states.transpose(1, 2) | |
value_states = value_states.transpose(1, 2) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
kv_seq_len += past_key_value[0].shape[-2] | |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
query_states, key_states = apply_rotary_pos_emb( | |
query_states, key_states, cos, sin, position_ids) | |
if past_key_value is not None: | |
# reuse k, v, self_attention | |
key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
past_key_value = (key_states, value_states) if use_cache else None | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
attn_weights = torch.matmul(query_states, key_states.transpose( | |
2, 3)) / math.sqrt(self.head_dim) | |
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | |
raise ValueError( | |
f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is' | |
f' {attn_weights.size()}') | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | |
raise ValueError( | |
f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}' | |
) | |
attn_weights = attn_weights + attention_mask | |
# upcast attention to fp32 | |
attn_weights = nn.functional.softmax( | |
attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
attn_output = torch.matmul(attn_weights, value_states) | |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | |
raise ValueError( | |
f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is' | |
f' {attn_output.size()}') | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
attn_output = self.wo(attn_output, im_mask) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
class InternLM2FlashAttention2(InternLM2Attention): | |
"""InternLM2 flash attention module. | |
This module inherits from `InternLM2Attention` as the weights of the module | |
stays untouched. The only required change would be on the forward pass | |
where it needs to correctly call the public API of flash attention and deal | |
with padding tokens in case the input contains any of them. | |
""" | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
im_mask: Optional[Tuple[torch.Tensor]] = None, | |
**kwargs, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], | |
Optional[Tuple[torch.Tensor]]]: | |
# InternLM2FlashAttention2 attention does not support output_attentions | |
if 'padding_mask' in kwargs: | |
warnings.warn( | |
'Passing `padding_mask` is deprecated and will be removed in v4.37. ' | |
'Please make sure use `attention_mask` instead.`') | |
# overwrite attention_mask with padding_mask | |
attention_mask = kwargs.pop('padding_mask') | |
output_attentions = False | |
bsz, q_len, _ = hidden_states.size() | |
qkv_states = self.wqkv(hidden_states, im_mask) | |
qkv_states = rearrange( | |
qkv_states, | |
'b q (h gs d) -> b q h gs d', | |
gs=2 + self.num_key_value_groups, | |
d=self.head_dim, | |
q=q_len, | |
) | |
query_states = qkv_states[..., :self.num_key_value_groups, :] | |
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d') | |
key_states = qkv_states[..., -2, :] | |
value_states = qkv_states[..., -1, :] | |
query_states = query_states.transpose(1, 2) | |
key_states = key_states.transpose(1, 2) | |
value_states = value_states.transpose(1, 2) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
kv_seq_len += past_key_value[0].shape[-2] | |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
query_states, key_states = apply_rotary_pos_emb( | |
query_states, key_states, cos, sin, position_ids) | |
if past_key_value is not None: | |
# reuse k, v, self_attention | |
key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
past_key_value = (key_states, value_states) if use_cache else None | |
query_states = query_states.transpose(1, 2) | |
key_states = key_states.transpose(1, 2) | |
value_states = value_states.transpose(1, 2) | |
attn_output = self._flash_attention_forward( | |
query_states, | |
key_states, | |
value_states, | |
attention_mask, | |
q_len) | |
attn_output = attn_output.reshape(bsz, q_len, | |
self.hidden_size).contiguous() | |
attn_output = self.wo(attn_output, im_mask) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
def _flash_attention_forward( | |
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None | |
): | |
""" | |
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | |
first unpad the input, then computes the attention scores and pad the final attention scores. | |
Args: | |
query_states (`torch.Tensor`): | |
Input query states to be passed to Flash Attention API | |
key_states (`torch.Tensor`): | |
Input key states to be passed to Flash Attention API | |
value_states (`torch.Tensor`): | |
Input value states to be passed to Flash Attention API | |
attention_mask (`torch.Tensor`): | |
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | |
position of padding tokens and 1 for the position of non-padding tokens. | |
dropout (`int`, *optional*): | |
Attention dropout | |
softmax_scale (`float`, *optional*): | |
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | |
""" | |
# Contains at least one padding token in the sequence | |
causal = self.is_causal and query_length != 1 | |
if attention_mask is not None: | |
batch_size = query_states.shape[0] | |
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input( | |
query_states, key_states, value_states, attention_mask, query_length | |
) | |
cu_seqlens_q, cu_seqlens_k = cu_seq_lens | |
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | |
attn_output_unpad = flash_attn_varlen_func( | |
query_states, | |
key_states, | |
value_states, | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_k=cu_seqlens_k, | |
max_seqlen_q=max_seqlen_in_batch_q, | |
max_seqlen_k=max_seqlen_in_batch_k, | |
dropout_p=dropout, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
) | |
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) | |
else: | |
attn_output = flash_attn_func( | |
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal | |
) | |
return attn_output | |
def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | |
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | |
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape | |
key_layer = index_first_axis( | |
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | |
) | |
value_layer = index_first_axis( | |
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | |
) | |
if query_length == kv_seq_len: | |
query_layer = index_first_axis( | |
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k | |
) | |
cu_seqlens_q = cu_seqlens_k | |
max_seqlen_in_batch_q = max_seqlen_in_batch_k | |
indices_q = indices_k | |
elif query_length == 1: | |
max_seqlen_in_batch_q = 1 | |
cu_seqlens_q = torch.arange( | |
batch_size + 1, dtype=torch.int32, device=query_layer.device | |
) # There is a memcpy here, that is very bad. | |
indices_q = cu_seqlens_q[:-1] | |
query_layer = query_layer.squeeze(1) | |
else: | |
# The -q_len: slice assumes left padding. | |
attention_mask = attention_mask[:, -query_length:] | |
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) | |
return ( | |
query_layer, | |
key_layer, | |
value_layer, | |
indices_q.to(torch.int64), | |
(cu_seqlens_q, cu_seqlens_k), | |
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), | |
) | |
class InternLM2DecoderLayer(nn.Module): | |
def __init__(self, config: InternLM2Config): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
self.attention = ( | |
InternLM2Attention(config=config) | |
if not getattr(config, 'attn_implementation')=="flash_attention_2" else | |
InternLM2FlashAttention2(config=config)) | |
self.feed_forward = InternLM2MLP(config) | |
self.attention_norm = InternLM2RMSNorm( | |
config.hidden_size, eps=config.rms_norm_eps) | |
self.ffn_norm = InternLM2RMSNorm( | |
config.hidden_size, eps=config.rms_norm_eps) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: Optional[bool] = False, | |
use_cache: Optional[bool] = False, | |
im_mask: Optional[Tuple[torch.Tensor]] = None, | |
**kwargs, | |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, | |
torch.FloatTensor]]]: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`, *optional*): | |
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, | |
query_sequence_length, key_sequence_length)` if default attention is used. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
(see `past_key_values`). | |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | |
""" | |
if 'padding_mask' in kwargs: | |
warnings.warn( | |
'Passing `padding_mask` is deprecated and will be removed in v4.37. ' | |
'Please make sure use `attention_mask` instead.`') | |
residual = hidden_states | |
hidden_states = self.attention_norm(hidden_states) | |
# Self Attention | |
hidden_states, self_attn_weights, present_key_value = self.attention( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
im_mask=im_mask, | |
**kwargs, | |
) | |
hidden_states = residual + hidden_states | |
# Fully Connected | |
residual = hidden_states | |
hidden_states = self.ffn_norm(hidden_states) | |
hidden_states = self.feed_forward(hidden_states, im_mask) | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states, ) | |
if output_attentions: | |
outputs += (self_attn_weights, ) | |
if use_cache: | |
outputs += (present_key_value, ) | |
return outputs | |
InternLM2_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`InternLM2Config`]): | |
Model configuration class with all the parameters of the model. Initializing with a config file does not | |
load the weights associated with the model, only the configuration. Check out the | |
[`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
class InternLM2PreTrainedModel(PreTrainedModel): | |
config_class = InternLM2Config | |
base_model_prefix = 'model' | |
supports_gradient_checkpointing = True | |
_no_split_modules = ['InternLM2DecoderLayer'] | |
_skip_keys_device_placement = 'past_key_values' | |
def _init_weights(self, module): | |
std = self.config.initializer_range | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
InternLM2_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see | |
`past_key_values`). | |
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | |
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | |
information on the default strategy. | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.n_positions - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or | |
when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | |
`(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`. | |
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | |
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't | |
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` | |
of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class InternLM2Model(InternLM2PreTrainedModel): | |
"""Transformer decoder consisting of *config.num_hidden_layers* layers. | |
Each layer is a [`InternLM2DecoderLayer`] | |
Args: | |
config: InternLM2Config | |
""" | |
_auto_class = 'AutoModel' | |
def __init__(self, config: InternLM2Config): | |
super().__init__(config) | |
self.padding_idx = config.pad_token_id | |
self.vocab_size = config.vocab_size | |
self.config = config | |
self.tok_embeddings = nn.Embedding(config.vocab_size, | |
config.hidden_size, | |
self.padding_idx) | |
self.layers = nn.ModuleList([ | |
InternLM2DecoderLayer(config) | |
for _ in range(config.num_hidden_layers) | |
]) | |
self.norm = InternLM2RMSNorm( | |
config.hidden_size, eps=config.rms_norm_eps) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.tok_embeddings | |
def set_input_embeddings(self, value): | |
self.tok_embeddings = value | |
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask | |
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, | |
inputs_embeds, past_key_values_length): | |
# create causal mask | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
combined_attention_mask = None | |
if input_shape[-1] > 1: | |
combined_attention_mask = _make_causal_mask( | |
input_shape, | |
inputs_embeds.dtype, | |
device=inputs_embeds.device, | |
past_key_values_length=past_key_values_length, | |
) | |
if attention_mask is not None: | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
expanded_attn_mask = _expand_mask( | |
attention_mask, inputs_embeds.dtype, | |
tgt_len=input_shape[-1]).to(inputs_embeds.device) | |
combined_attention_mask = ( | |
expanded_attn_mask if combined_attention_mask is None else | |
expanded_attn_mask + combined_attention_mask) | |
return combined_attention_mask | |
def forward(self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
**kwargs) -> Union[Tuple, BaseModelOutputWithPast]: | |
im_mask = kwargs.get('im_mask', None) | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else | |
self.config.output_hidden_states) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if self.config.attn_implementation: _import_flash_attn() | |
# retrieve input_ids and inputs_embeds | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError( | |
'You cannot specify both input_ids and inputs_embeds at the same time' | |
) | |
elif input_ids is not None: | |
batch_size, seq_length = input_ids.shape[:2] | |
elif inputs_embeds is not None: | |
batch_size, seq_length = inputs_embeds.shape[:2] | |
else: | |
raise ValueError( | |
'You have to specify either input_ids or inputs_embeds') | |
seq_length_with_past = seq_length | |
past_key_values_length = 0 | |
if past_key_values is not None: | |
past_key_values_length = past_key_values[0][0].shape[2] | |
seq_length_with_past = seq_length_with_past + past_key_values_length | |
if position_ids is None: | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
position_ids = torch.arange( | |
past_key_values_length, | |
seq_length + past_key_values_length, | |
dtype=torch.long, | |
device=device) | |
position_ids = position_ids.unsqueeze(0) | |
if inputs_embeds is None: | |
inputs_embeds = self.tok_embeddings(input_ids) | |
im_mask = torch.zeros(inputs_embeds.shape[:2]).to( | |
inputs_embeds.device).bool() | |
if self.config.attn_implementation == "flash_attention_2": | |
# 2d mask is passed through the layers | |
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None | |
else: | |
if attention_mask is None: | |
attention_mask = torch.ones( | |
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device | |
) | |
attention_mask = self._prepare_decoder_attention_mask( | |
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length | |
) | |
# embed positions | |
# if attention_mask is None: | |
# attention_mask = torch.ones((batch_size, seq_length_with_past), | |
# dtype=torch.bool, | |
# device=inputs_embeds.device) | |
# attention_mask = self._prepare_decoder_attention_mask( | |
# attention_mask, (batch_size, seq_length), inputs_embeds, | |
# past_key_values_length) | |
# embed positions | |
hidden_states = inputs_embeds | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...' | |
) | |
use_cache = False | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
next_decoder_cache = () if use_cache else None | |
for idx, decoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
all_hidden_states += (hidden_states, ) | |
past_key_value = past_key_values[ | |
idx] if past_key_values is not None else None | |
if self.gradient_checkpointing and self.training: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
# None for past_key_value | |
return module(*inputs, output_attentions, None, | |
im_mask) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(decoder_layer), | |
hidden_states, | |
attention_mask, | |
position_ids, | |
None, | |
) | |
else: | |
layer_outputs = decoder_layer( | |
hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
im_mask=im_mask, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache += ( | |
layer_outputs[2 if output_attentions else 1], ) | |
if output_attentions: | |
all_self_attns += (layer_outputs[1], ) | |
hidden_states = self.norm(hidden_states) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states, ) | |
next_cache = next_decoder_cache if use_cache else None | |
if not return_dict: | |
return tuple( | |
v for v in | |
[hidden_states, next_cache, all_hidden_states, all_self_attns] | |
if v is not None) | |
return BaseModelOutputWithPast( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
) | |