Meteor / meteor /arch /modeling_internlm2.py
BK-Lee's picture
v1
6957169
raw
history blame
44.9 kB
# # Copyright (c) InternLM. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch InternLM2 model."""
import math
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from einops import rearrange
from torch import nn
from transformers.activations import ACT2FN
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (add_start_docstrings,
add_start_docstrings_to_model_forward, logging)
try:
from transformers.generation.streamers import BaseStreamer
except: # noqa # pylint: disable=bare-except
BaseStreamer = None
from .build_module import LoRA
from .configuration_internlm2 import InternLM2Config
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = 'InternLM2Config'
flash_attn_func, flash_attn_varlen_func = None, None
pad_input, index_first_axis, unpad_input = None, None, None
def _import_flash_attn():
global flash_attn_func, flash_attn_varlen_func
global pad_input, index_first_axis, unpad_input
try:
from flash_attn import flash_attn_func as _flash_attn_func, flash_attn_varlen_func as _flash_attn_varlen_func
from flash_attn.bert_padding import pad_input as _pad_input, index_first_axis as _index_first_axis, unpad_input as _unpad_input
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
except ImportError:
raise ImportError("flash_attn is not installed.")
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(input_ids_shape: torch.Size,
dtype: torch.dtype,
device: torch.device,
past_key_values_length: int = 0):
"""Make causal mask used for bi-directional self-attention."""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len),
torch.tensor(torch.finfo(dtype).min, device=device),
device=device)
mask_cond = torch.arange(mask.size(-1), device=device)
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat([
torch.zeros(
tgt_len, past_key_values_length, dtype=dtype, device=device),
mask
],
dim=-1)
return mask[None, None, :, :].expand(bsz, 1, tgt_len,
tgt_len + past_key_values_length)
# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor,
dtype: torch.dtype,
tgt_len: Optional[int] = None):
"""Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len,
src_seq_len]`."""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len,
src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(
inverted_mask.to(torch.bool),
torch.finfo(dtype).min)
class InternLM2RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""InternLM2RMSNorm is equivalent to T5LayerNorm."""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance +
self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
class InternLM2RotaryEmbedding(nn.Module):
def __init__(self,
dim,
max_position_embeddings=2048,
base=10000,
device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (
self.base
**(torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer('inv_freq', inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings,
device=self.inv_freq.device,
dtype=torch.get_default_dtype())
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer(
'cos_cached', emb.cos().to(dtype), persistent=False)
self.register_buffer(
'sin_cached', emb.sin().to(dtype), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(
seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:seq_len].to(dtype=x.dtype),
self.sin_cached[:seq_len].to(dtype=x.dtype),
)
class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
"""InternLM2RotaryEmbedding extended with linear scaling.
Credits to the Reddit user /u/kaiokendev
"""
def __init__(self,
dim,
max_position_embeddings=2048,
base=10000,
device=None,
scaling_factor=1.0):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
t = t / self.scaling_factor
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer(
'cos_cached', emb.cos().to(dtype), persistent=False)
self.register_buffer(
'sin_cached', emb.sin().to(dtype), persistent=False)
class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
"""InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
Credits to the Reddit users /u/bloc97 and /u/emozilla.
"""
def __init__(self,
dim,
max_position_embeddings=2048,
base=10000,
device=None,
scaling_factor=1.0):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
if seq_len > self.max_position_embeddings:
base = self.base * ((self.scaling_factor * seq_len /
self.max_position_embeddings) -
(self.scaling_factor - 1))**(
self.dim / (self.dim - 2))
inv_freq = 1.0 / (
base
**(torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer('inv_freq', inv_freq, persistent=False)
t = torch.arange(
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer(
'cos_cached', emb.cos().to(dtype), persistent=False)
self.register_buffer(
'sin_cached', emb.sin().to(dtype), persistent=False)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., :x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2:]
return torch.cat((-x2, x1), dim=-1)
# def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
# # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
# cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
# sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
# cos = cos.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1)
# sin = sin.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1)
# if q.size(2) == 1:
# q_embed = (q * cos[:, :, -1:, :]) + (
# rotate_half(q) * sin[:, :, -1:, :])
# else:
# q_embed = (q * cos) + (rotate_half(q) * sin)
# if k.size(2) == 1:
# k_embed = (k * cos[:, :, -1:, :]) + (
# rotate_half(k) * sin[:, :, -1:, :])
# else:
# k_embed = (k * cos) + (rotate_half(k) * sin)
# return q_embed, k_embed
# Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors."""
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class InternLM2MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.w1 = LoRA(
self.hidden_size,
self.intermediate_size,
bias=False,
lora_r=256,
lora_alpha=256,
lora_len=576)
self.w3 = LoRA(
self.hidden_size,
self.intermediate_size,
bias=False,
lora_r=256,
lora_alpha=256,
lora_len=576)
self.w2 = LoRA(
self.intermediate_size,
self.hidden_size,
bias=False,
lora_r=256,
lora_alpha=256,
lora_len=576)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x, im_mask):
down_proj = self.w2(
self.act_fn(self.w1(x, im_mask)) * self.w3(x, im_mask), im_mask)
return down_proj
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""This is the equivalent of torch.repeat_interleave(x, dim=1,
repeats=n_rep).
The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to
(batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :,
None, :, :].expand(batch,
num_key_value_heads,
n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen,
head_dim)
class InternLM2Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper."""
def __init__(self, config: InternLM2Config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.is_causal = True
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
f' and `num_heads`: {self.num_heads}).')
self.wqkv = LoRA(
self.hidden_size,
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
bias=config.bias,
lora_r=256,
lora_alpha=256,
lora_len=576)
self.wo = LoRA(
self.num_heads * self.head_dim,
self.hidden_size,
bias=config.bias,
lora_r=256,
lora_alpha=256,
lora_len=576)
self._init_rope()
def _init_rope(self):
if self.config.rope_scaling is None:
self.rotary_emb = InternLM2RotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.config.rope_theta,
)
else:
scaling_type = self.config.rope_scaling['type']
scaling_factor = self.config.rope_scaling['factor']
if scaling_type == 'dynamic':
self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.config.rope_theta,
scaling_factor=scaling_factor)
else:
raise ValueError(
"Currently we only support rotary embedding's type being 'dynamic'."
)
return self.rotary_emb
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads,
self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
im_mask: Optional[Tuple[torch.Tensor]] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
Optional[Tuple[torch.Tensor]]]:
if 'padding_mask' in kwargs:
warnings.warn(
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
'Please make sure use `attention_mask` instead.`')
bsz, q_len, _ = hidden_states.size()
qkv_states = self.wqkv(hidden_states, im_mask)
qkv_states = rearrange(
qkv_states,
'b q (h gs d) -> b q h gs d',
gs=2 + self.num_key_value_groups,
d=self.head_dim,
)
query_states = qkv_states[..., :self.num_key_value_groups, :]
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
key_states = qkv_states[..., -2, :]
value_states = qkv_states[..., -1, :]
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(
query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(
2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
f' {attn_weights.size()}')
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(
attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
f' {attn_output.size()}')
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.wo(attn_output, im_mask)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class InternLM2FlashAttention2(InternLM2Attention):
"""InternLM2 flash attention module.
This module inherits from `InternLM2Attention` as the weights of the module
stays untouched. The only required change would be on the forward pass
where it needs to correctly call the public API of flash attention and deal
with padding tokens in case the input contains any of them.
"""
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
im_mask: Optional[Tuple[torch.Tensor]] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
Optional[Tuple[torch.Tensor]]]:
# InternLM2FlashAttention2 attention does not support output_attentions
if 'padding_mask' in kwargs:
warnings.warn(
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
'Please make sure use `attention_mask` instead.`')
# overwrite attention_mask with padding_mask
attention_mask = kwargs.pop('padding_mask')
output_attentions = False
bsz, q_len, _ = hidden_states.size()
qkv_states = self.wqkv(hidden_states, im_mask)
qkv_states = rearrange(
qkv_states,
'b q (h gs d) -> b q h gs d',
gs=2 + self.num_key_value_groups,
d=self.head_dim,
q=q_len,
)
query_states = qkv_states[..., :self.num_key_value_groups, :]
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
key_states = qkv_states[..., -2, :]
value_states = qkv_states[..., -1, :]
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(
query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
attn_output = self._flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len)
attn_output = attn_output.reshape(bsz, q_len,
self.hidden_size).contiguous()
attn_output = self.wo(attn_output, im_mask)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def _flash_attention_forward(
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
):
"""
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
first unpad the input, then computes the attention scores and pad the final attention scores.
Args:
query_states (`torch.Tensor`):
Input query states to be passed to Flash Attention API
key_states (`torch.Tensor`):
Input key states to be passed to Flash Attention API
value_states (`torch.Tensor`):
Input value states to be passed to Flash Attention API
attention_mask (`torch.Tensor`):
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
position of padding tokens and 1 for the position of non-padding tokens.
dropout (`int`, *optional*):
Attention dropout
softmax_scale (`float`, *optional*):
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
"""
# Contains at least one padding token in the sequence
causal = self.is_causal and query_length != 1
if attention_mask is not None:
batch_size = query_states.shape[0]
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
query_states, key_states, value_states, attention_mask, query_length
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
)
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
else:
attn_output = flash_attn_func(
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
)
return attn_output
def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
key_layer = index_first_axis(
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
value_layer = index_first_axis(
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
return (
query_layer,
key_layer,
value_layer,
indices_q.to(torch.int64),
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
class InternLM2DecoderLayer(nn.Module):
def __init__(self, config: InternLM2Config):
super().__init__()
self.hidden_size = config.hidden_size
self.attention = (
InternLM2Attention(config=config)
if not getattr(config, 'attn_implementation')=="flash_attention_2" else
InternLM2FlashAttention2(config=config))
self.feed_forward = InternLM2MLP(config)
self.attention_norm = InternLM2RMSNorm(
config.hidden_size, eps=config.rms_norm_eps)
self.ffn_norm = InternLM2RMSNorm(
config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
im_mask: Optional[Tuple[torch.Tensor]] = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor,
torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*):
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
query_sequence_length, key_sequence_length)` if default attention is used.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
"""
if 'padding_mask' in kwargs:
warnings.warn(
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
'Please make sure use `attention_mask` instead.`')
residual = hidden_states
hidden_states = self.attention_norm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.attention(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
im_mask=im_mask,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.ffn_norm(hidden_states)
hidden_states = self.feed_forward(hidden_states, im_mask)
hidden_states = residual + hidden_states
outputs = (hidden_states, )
if output_attentions:
outputs += (self_attn_weights, )
if use_cache:
outputs += (present_key_value, )
return outputs
InternLM2_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`InternLM2Config`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
InternLM2_START_DOCSTRING,
)
class InternLM2PreTrainedModel(PreTrainedModel):
config_class = InternLM2Config
base_model_prefix = 'model'
supports_gradient_checkpointing = True
_no_split_modules = ['InternLM2DecoderLayer']
_skip_keys_device_placement = 'past_key_values'
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
InternLM2_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
InternLM2_START_DOCSTRING,
)
class InternLM2Model(InternLM2PreTrainedModel):
"""Transformer decoder consisting of *config.num_hidden_layers* layers.
Each layer is a [`InternLM2DecoderLayer`]
Args:
config: InternLM2Config
"""
_auto_class = 'AutoModel'
def __init__(self, config: InternLM2Config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.config = config
self.tok_embeddings = nn.Embedding(config.vocab_size,
config.hidden_size,
self.padding_idx)
self.layers = nn.ModuleList([
InternLM2DecoderLayer(config)
for _ in range(config.num_hidden_layers)
])
self.norm = InternLM2RMSNorm(
config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.tok_embeddings
def set_input_embeddings(self, value):
self.tok_embeddings = value
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
def _prepare_decoder_attention_mask(self, attention_mask, input_shape,
inputs_embeds, past_key_values_length):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape,
inputs_embeds.dtype,
device=inputs_embeds.device,
past_key_values_length=past_key_values_length,
)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(
attention_mask, inputs_embeds.dtype,
tgt_len=input_shape[-1]).to(inputs_embeds.device)
combined_attention_mask = (
expanded_attn_mask if combined_attention_mask is None else
expanded_attn_mask + combined_attention_mask)
return combined_attention_mask
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
def forward(self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs) -> Union[Tuple, BaseModelOutputWithPast]:
im_mask = kwargs.get('im_mask', None)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else
self.config.output_hidden_states)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.attn_implementation: _import_flash_attn()
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
'You cannot specify both input_ids and inputs_embeds at the same time'
)
elif input_ids is not None:
batch_size, seq_length = input_ids.shape[:2]
elif inputs_embeds is not None:
batch_size, seq_length = inputs_embeds.shape[:2]
else:
raise ValueError(
'You have to specify either input_ids or inputs_embeds')
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length,
seq_length + past_key_values_length,
dtype=torch.long,
device=device)
position_ids = position_ids.unsqueeze(0)
if inputs_embeds is None:
inputs_embeds = self.tok_embeddings(input_ids)
im_mask = torch.zeros(inputs_embeds.shape[:2]).to(
inputs_embeds.device).bool()
if self.config.attn_implementation == "flash_attention_2":
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
else:
if attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
)
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
)
# embed positions
# if attention_mask is None:
# attention_mask = torch.ones((batch_size, seq_length_with_past),
# dtype=torch.bool,
# device=inputs_embeds.device)
# attention_mask = self._prepare_decoder_attention_mask(
# attention_mask, (batch_size, seq_length), inputs_embeds,
# past_key_values_length)
# embed positions
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states, )
past_key_value = past_key_values[
idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, None,
im_mask)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
position_ids,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
im_mask=im_mask,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (
layer_outputs[2 if output_attentions else 1], )
if output_attentions:
all_self_attns += (layer_outputs[1], )
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states, )
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v for v in
[hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)