Meteor / app.py
BK-Lee's picture
v1
4ffdbdc
raw
history blame
3.46 kB
# A100 Zero GPU
import spaces
import torch
import gradio as gr
from config import *
from PIL import Image
from utils.utils import *
from threading import Thread
import torch.nn.functional as F
from meteor.load_mmamba import load_mmamba
from meteor.load_meteor import load_meteor
from transformers import TextIteratorStreamer
from torchvision.transforms.functional import pil_to_tensor
# loading meteor model
mmamba = load_mmamba('BK-Lee/Meteor-Mamba').cuda()
meteor, tok_meteor = load_meteor('BK-Lee/Meteor-MLM', bits=4)
# device
device = torch.cuda.current_device()
# freeze model
freeze_model(mmamba)
freeze_model(meteor)
# previous length
previous_length = 0
def threading_function(inputs, image_token_number, streamer):
# Meteor Mamba
mmamba_inputs = mmamba.eval_process(inputs=inputs, tokenizer=tok_meteor, device=device, img_token_number=image_token_number)
if 'image' in mmamba_inputs.keys():
clip_features = meteor.clip_features(mmamba_inputs['image'])
mmamba_inputs.update({"image_features": clip_features})
mmamba_outputs = mmamba(**mmamba_inputs)
# Meteor
meteor_inputs = meteor.eval_process(inputs=inputs, data='demo', tokenizer=tok_meteor, device=device, img_token_number=image_token_number)
if 'image' in mmamba_inputs.keys():
meteor_inputs.update({"image_features": clip_features})
meteor_inputs.update({"tor_features": mmamba_outputs.tor_features})
generation_kwargs = meteor_inputs
generation_kwargs.update({'streamer': streamer})
generation_kwargs.update({'do_sample': True})
generation_kwargs.update({'max_new_tokens': 128})
generation_kwargs.update({'top_p': 0.95})
generation_kwargs.update({'temperature': 0.9})
generation_kwargs.update({'use_cache': True})
return meteor.generate(**generation_kwargs)
def add_message(history, message):
for x in message["files"]:
history.append(((x,), None))
if message["text"] is not None:
history.append((message["text"], None))
return history, gr.MultimodalTextbox(value=None, interactive=False)
@spaces.GPU(duration=120)
def bot_streaming(message, history):
# prompt type -> input prompt
image_token_number = int((490/14)**2)
if len(message['files']) != 0:
# Image Load
image = F.interpolate(pil_to_tensor(Image.open(message['files'][0]).convert("RGB")).unsqueeze(0), size=(490, 490), mode='bicubic').squeeze(0)
inputs = [{'image': image, 'question': message['text']}]
else:
inputs = [{'question': message['text']}]
# [4] Meteor Generation
with torch.inference_mode():
# kwargs
streamer = TextIteratorStreamer(tok_meteor, skip_special_tokens=True)
# Threading generation
thread = Thread(target=threading_function, kwargs=dict(inputs=inputs, image_token_number=image_token_number, streamer=streamer))
thread.start()
# generated text
generated_text = ""
for new_text in streamer:
generated_text += new_text
generated_text
# Text decoding
response = generated_text.split('assistant\n')[-1].split('[U')[0].strip()
buffer = ""
for character in response:
buffer += character
yield buffer
demo = gr.ChatInterface(fn=bot_streaming, title="Meteor",
description="Meteor",
stop_btn="Stop Generation", multimodal=True)
demo.launch(debug=True)