Spaces:
Sleeping
Sleeping
import re | |
import torch | |
import torch.nn as nn | |
from transformers import CLIPVisionModel | |
def build_vision_tower(): | |
vision_tower = 'openai/clip-vit-large-patch14-336' | |
return CLIPVisionTower(vision_tower) | |
def build_vision_projector(): | |
projector_type = 'mlp2x_gelu' | |
mm_hidden_size = 1024 | |
hidden_size = 4096 | |
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type) | |
if mlp_gelu_match: | |
mlp_depth = int(mlp_gelu_match.group(1)) | |
modules = [nn.Linear(mm_hidden_size, hidden_size)] | |
for _ in range(1, mlp_depth): | |
modules.append(nn.GELU()) | |
modules.append(nn.Linear(hidden_size, hidden_size)) | |
return nn.Sequential(*modules) | |
if projector_type == 'identity': | |
return IdentityMap() | |
raise ValueError(f'Unknown projector type: {projector_type}') | |
class IdentityMap(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, x, *args, **kwargs): | |
return x | |
def config(self): | |
return {'mm_projector_type': 'identity'} | |
class CLIPVisionTower(nn.Module): | |
def __init__(self, vision_tower): | |
super().__init__() | |
self.is_loaded = False | |
self.is_resize_pos = False | |
self.vision_tower_name = vision_tower | |
self.select_layer = -1 | |
self.select_feature = 'patch' | |
self.load_model() | |
self.resize_pos() | |
def load_model(self): | |
self.vision_tower = CLIPVisionModel.from_pretrained( | |
self.vision_tower_name) | |
self.vision_tower.requires_grad_(False) | |
self.is_loaded = True | |
def resize_pos(self): | |
pos_embed_checkpoint = self.vision_tower.vision_model.embeddings.position_embedding.weight | |
pos_embed_checkpoint = pos_embed_checkpoint.unsqueeze(0) | |
orig_size = 24 | |
new_size = 35 | |
if pos_embed_checkpoint.shape[1] == new_size**2 + 1: | |
self.is_resize_pos = True | |
else: | |
embedding_size = pos_embed_checkpoint.shape[-1] | |
num_extra_tokens = 1 | |
new_num = new_size**2 + num_extra_tokens | |
# print('Position interpolate from %dx%d to %dx%d' % | |
# (orig_size, orig_size, new_size, new_size)) | |
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] | |
# only the position tokens are interpolated | |
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] | |
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, | |
embedding_size).permute( | |
0, 3, 1, 2) | |
pos_tokens = torch.nn.functional.interpolate( | |
pos_tokens, | |
size=(new_size, new_size), | |
mode='bicubic', | |
align_corners=False) | |
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) | |
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) | |
new_pos_embed = new_pos_embed.squeeze(0) | |
self.vision_tower.vision_model.embeddings.position_embedding = torch.nn.Embedding( | |
new_num, 1024) | |
self.vision_tower.vision_model.embeddings.position_embedding.weight = torch.nn.Parameter( | |
new_pos_embed.to(pos_embed_checkpoint.dtype)) | |
self.vision_tower.vision_model.embeddings.position_ids = torch.arange( | |
new_num).expand((1, -1)) | |
self.is_resize_pos = True | |
def feature_select(self, image_forward_outs): | |
image_features = image_forward_outs.hidden_states[self.select_layer] | |
if self.select_feature == 'patch': | |
image_features = image_features[:, 1:] | |
elif self.select_feature == 'cls_patch': | |
image_features = image_features | |
else: | |
raise ValueError( | |
f'Unexpected select feature: {self.select_feature}') | |
return image_features | |
def forward(self, images): | |
if not self.is_loaded: | |
self.load_model() | |
if type(images) is list: | |
image_features = [] | |
for image in images: | |
image_forward_out = self.vision_tower( | |
image.to(device=self.device, | |
dtype=self.dtype).unsqueeze(0), | |
output_hidden_states=True) | |
image_feature = self.feature_select(image_forward_out).to( | |
image.dtype) | |
image_features.append(image_feature) | |
else: | |
image_forward_outs = self.vision_tower( | |
images.to(device=self.device, dtype=self.dtype), | |
output_hidden_states=True) | |
image_features = self.feature_select(image_forward_outs).to( | |
images.dtype) | |
return image_features | |
def dummy_feature(self): | |
return torch.zeros( | |
1, self.hidden_size, device=self.device, dtype=self.dtype) | |
def dtype(self): | |
return self.vision_tower.dtype | |
def device(self): | |
return self.vision_tower.device | |
def config(self): | |
if self.is_loaded: | |
return self.vision_tower.config | |
else: | |
return self.cfg_only | |
def hidden_size(self): | |
return self.config.hidden_size | |
def num_patches(self): | |
return (self.config.image_size // self.config.patch_size)**2 | |
class LoRA(nn.Module): | |
def __init__(self, | |
in_features: int, | |
out_features: int, | |
bias: bool = True, | |
device=None, | |
dtype=None, | |
lora_r=8, | |
lora_alpha=16, | |
lora_dropout=0.05, | |
lora_len=0, | |
**kwargs) -> None: | |
super().__init__() | |
self.lora_r = lora_r | |
self.lora_alpha = lora_alpha | |
self.lora_len = lora_len | |
if lora_dropout > 0.: | |
self.lora_dropout = nn.Dropout(p=lora_dropout) | |
else: | |
self.lora_dropout = lambda x: x | |
self.lora_scaling = self.lora_alpha / self.lora_r | |
self.lora_A = nn.Linear( | |
in_features, self.lora_r, bias=False, device=device, dtype=dtype) | |
self.lora_B = nn.Linear( | |
self.lora_r, out_features, bias=False, device=device, dtype=dtype) | |
self.ffn = nn.Linear(in_features, out_features, bias=bias, device=device, dtype=dtype) | |
def forward(self, x, im_mask=None): | |
res = self.ffn(x) | |
if im_mask is not None: | |
if torch.sum(im_mask) > 0: | |
part_x = x[im_mask] | |
res[im_mask] += self.lora_B( | |
self.lora_A( | |
self.lora_dropout(part_x))) * self.lora_scaling | |
else: | |
part_x = x[:, :1] | |
res[:, :1] += self.lora_B( | |
self.lora_A(self.lora_dropout(part_x))) * 0 | |
return res | |