Spaces:
Sleeping
Sleeping
# System | |
import torch | |
from torch import nn | |
from utils.utils import * | |
import torch.utils.checkpoint | |
from transformers.cache_utils import Cache | |
from typing import List, Optional, Tuple, Union | |
from .build_module import build_vision_projector, build_vision_tower | |
from .modeling_internlm2 import InternLM2Model, InternLM2PreTrainedModel | |
# Dataclass & ModelOutput | |
from dataclasses import dataclass | |
from transformers.modeling_outputs import ModelOutput | |
class MeteorCausalLMOutputWithPast(ModelOutput): | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
past_key_values: Optional[List[torch.FloatTensor]] = None | |
tor_features: Optional[List[torch.FloatTensor]] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
class MeteorForCausalLM(InternLM2PreTrainedModel): | |
_auto_class = 'AutoModelForCausalLM' | |
_tied_weights_keys = ['output.weight'] | |
def __init__(self, config): | |
super().__init__(config) | |
# Model | |
self.model = InternLM2Model(config) | |
self.vocab_size = config.vocab_size | |
self.output = nn.Linear(config.hidden_size, config.vocab_size-2, bias=False) | |
self.max_length = config.max_length | |
# Initialize weights and apply final processing | |
self.post_init() | |
# Vision Encoder | |
self.vit = build_vision_tower() | |
# Vision Projection | |
self.vision_proj = build_vision_projector() | |
def eval_process( | |
self, | |
inputs, | |
data, | |
tokenizer, | |
device, | |
img_token_number, | |
): | |
batched_qa_prompt=[] | |
for _input in inputs: | |
# Visualization | |
# imim = _input['image'].cpu().permute(1, 2, 0) | |
# make question, rationale, and answer | |
question = make_instruction_for_eval_meteor(_input['question'], data) | |
# add bundle image tokens if it has <image> token | |
question = add_bundle_tokens(question, '<image>', img_token_number) | |
batched_qa_prompt.append(question) | |
'''For Final Outputs''' | |
qa_prompts = tokenizer(batched_qa_prompt, padding='longest', return_tensors="pt", add_special_tokens=False) | |
# [1] input_ids | |
input_ids = qa_prompts.input_ids.to(device) | |
# [2] attention_mask | |
attention_mask = qa_prompts.attention_mask.to(device) | |
# [3] im_mask | |
im_mask = torch.zeros_like(input_ids).bool() | |
im_mask[torch.where(input_ids==self.config.image_token_index)] = True | |
return {"input_ids": input_ids, | |
"attention_mask": attention_mask, | |
"im_mask": im_mask, | |
} | |
def clip_features(self, image): | |
self.vit.eval() | |
return self.vit(image) | |
def _merge_input_embeds_with_tor_features(self, tor_features, inputs_embeds, input_ids): | |
# batch index for image feature | |
batch_ind_tor_feature = 0 | |
for ind, input_id in enumerate(input_ids): | |
matching = torch.where(input_id==self.config.tor_token_index) | |
num_tor_tokens_per_one_sample = len(matching[0]) | |
inputs_embeds[ind][matching] = tor_features[batch_ind_tor_feature: batch_ind_tor_feature+num_tor_tokens_per_one_sample].to(inputs_embeds.dtype) | |
batch_ind_tor_feature += num_tor_tokens_per_one_sample | |
def _merge_input_embeds_with_image_features(self, image_features, inputs_embeds, input_ids): | |
# batch index for image feature | |
batch_ind_image_feature = 0 | |
# shape of image_features | |
_, C, D = image_features.shape | |
for ind, input_id in enumerate(input_ids): | |
matching = torch.where(input_id==self.config.image_token_index) | |
num_image_tokens_per_one_sample = len(matching[0]) // C | |
inputs_embeds[ind][matching] = image_features[batch_ind_image_feature: batch_ind_image_feature+num_image_tokens_per_one_sample].view(-1, D) | |
batch_ind_image_feature += num_image_tokens_per_one_sample | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
image_features: torch.FloatTensor = None, | |
tor_features: torch.FloatTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
im_mask: torch.BoolTensor = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, MeteorCausalLMOutputWithPast]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if inputs_embeds is None: | |
# 1. Extra the input embeddings | |
inputs_embeds = self.get_input_embeddings()(input_ids) | |
# 2. Merge text and images | |
if image_features is not None and input_ids.shape[1] != 1: | |
image_features = self.vision_proj(image_features.to(inputs_embeds.dtype)) | |
self._merge_input_embeds_with_image_features(image_features, inputs_embeds, input_ids) | |
# 3. Merge text and <tor> | |
if tor_features is not None and input_ids.shape[1] != 1: | |
self._merge_input_embeds_with_tor_features(tor_features, inputs_embeds, input_ids) | |
# In case input_ids.shape[1] == 1 & image_features==None & past_key_values != None, we are in the case of | |
# generation with cache | |
elif past_key_values is not None and image_features is not None and input_ids.shape[1] == 1: | |
# Retrieve the first layer to inspect the logits and mask out the hidden states | |
# that are set to 0 | |
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0] | |
# Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941 | |
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0) | |
# Get the target length | |
target_length = input_ids.shape[1] | |
past_length = first_layer_past_key_value.shape[-1] | |
extended_attention_mask = torch.ones( | |
(attention_mask.shape[0], past_length), | |
dtype=attention_mask.dtype, | |
device=attention_mask.device, | |
) | |
# Filter out only the tokens that can be un-attended, this can happen | |
# if one uses Llava + Fused modules where the cache on the | |
# first iteration is already big enough, or if one passes custom cache | |
valid_indices = non_attended_tokens < extended_attention_mask.size(-1) | |
new_batch_index = batch_index[valid_indices] | |
new_non_attended_tokens = non_attended_tokens[valid_indices] | |
# Zero-out the places where we don't need to attend | |
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0 | |
attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1) | |
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 | |
im_mask = torch.zeros(inputs_embeds.shape[:2]).bool().to(inputs_embeds.device) | |
outputs = self.model( | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
im_mask=im_mask, | |
) | |
hidden_states = outputs[0] | |
logits = self.output(hidden_states) | |
loss = None | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
if attention_mask is not None: | |
shift_attention_mask = attention_mask[..., 1:] | |
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous() | |
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous() | |
else: | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = nn.CrossEntropyLoss() | |
loss = loss_fct( | |
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device) | |
) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return (loss,) + output if loss is not None else output | |
return MeteorCausalLMOutputWithPast( | |
loss=loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
tor_features=hidden_states[torch.where(input_ids==self.config.tor_token_index)], | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
def prepare_inputs_for_generation(self, | |
input_ids, | |
past_key_values=None, | |
attention_mask=None, | |
inputs_embeds=None, | |
image_features=None, | |
tor_features=None, | |
im_mask=None, | |
**kwargs): | |
if past_key_values is not None: | |
past_length = past_key_values[0][0].shape[2] | |
# Some generation methods already pass only the last input ID | |
if input_ids.shape[1] > past_length: | |
remove_prefix_length = past_length | |
else: | |
# Default to old behavior: keep only final ID | |
remove_prefix_length = input_ids.shape[1] - 1 | |
input_ids = input_ids[:, remove_prefix_length:] | |
position_ids = kwargs.get('position_ids', None) | |
if attention_mask is not None and position_ids is None: | |
# create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
if past_key_values: | |
position_ids = position_ids[:, -input_ids.shape[1]:] | |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
if inputs_embeds is not None and past_key_values is None: | |
model_inputs = {"inputs_embeds": inputs_embeds} | |
else: | |
model_inputs = {"input_ids": input_ids} | |
model_inputs.update( | |
{ | |
"position_ids": position_ids, | |
"past_key_values": past_key_values, | |
"use_cache": kwargs.get("use_cache"), | |
"attention_mask": attention_mask, | |
"image_features": image_features, | |
"tor_features": tor_features, | |
"im_mask": im_mask, | |
} | |
) | |
return model_inputs | |
def _reorder_cache(past_key_values, beam_idx): | |
reordered_past = () | |
for layer_past in past_key_values: | |
reordered_past += (tuple( | |
past_state.index_select(0, beam_idx.to(past_state.device)) | |
for past_state in layer_past), ) | |
return reordered_past |