Spaces:
Sleeping
Sleeping
# Copyright (c) InternLM. All rights reserved. | |
# | |
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | |
# and OPT implementations in this library. It has been modified from its | |
# original forms to accommodate minor architectural differences compared | |
# to GPT-NeoX and OPT used by the Meta AI team that trained the model. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""InternLM model configuration.""" | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
INTERNLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {} | |
class InternLM2Config(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`InternLMModel`]. It is used to instantiate | |
an InternLM model according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the InternLM-7B. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 32000): | |
Vocabulary size of the InternLM model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`InternLMModel`] | |
hidden_size (`int`, *optional*, defaults to 4096): | |
Dimension of the hidden representations. | |
intermediate_size (`int`, *optional*, defaults to 11008): | |
Dimension of the MLP representations. | |
num_hidden_layers (`int`, *optional*, defaults to 32): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 32): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
num_key_value_heads (`int`, *optional*): | |
This is the number of key_value heads that should be used to implement Grouped Query Attention. If | |
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | |
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | |
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | |
by meanpooling all the original heads within that group. For more details checkout [this | |
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to | |
`num_attention_heads`. | |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | |
The non-linear activation function (function or string) in the decoder. | |
max_position_embeddings (`int`, *optional*, defaults to 2048): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
rms_norm_eps (`float`, *optional*, defaults to 1e-12): | |
The epsilon used by the rms normalization layers. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). Only | |
relevant if `config.is_decoder=True`. | |
tie_word_embeddings(`bool`, *optional*, defaults to `False`): | |
Whether to tie weight embeddings | |
Example: | |
```python | |
>>> from transformers import InternLMModel, InternLMConfig | |
>>> # Initializing a InternLM internlm-7b style configuration | |
>>> configuration = InternLMConfig() | |
>>> # Initializing a model from the internlm-7b style configuration | |
>>> model = InternLMModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = 'internlm' | |
_auto_class = 'AutoConfig' | |
def __init__( # pylint: disable=W0102 | |
self, | |
vocab_size=103168, | |
hidden_size=4096, | |
intermediate_size=11008, | |
num_hidden_layers=32, | |
num_attention_heads=32, | |
num_key_value_heads=None, | |
hidden_act='silu', | |
max_position_embeddings=2048, | |
initializer_range=0.02, | |
rms_norm_eps=1e-6, | |
use_cache=True, | |
pad_token_id=0, | |
bos_token_id=1, | |
eos_token_id=2, | |
tie_word_embeddings=False, | |
bias=True, | |
rope_theta=10000, | |
rope_scaling=None, | |
attn_implementation='eager', | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.max_position_embeddings = max_position_embeddings | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.bias = bias | |
if num_key_value_heads is None: | |
num_key_value_heads = num_attention_heads | |
self.num_key_value_heads = num_key_value_heads | |
self.hidden_act = hidden_act | |
self.initializer_range = initializer_range | |
self.rms_norm_eps = rms_norm_eps | |
self.use_cache = use_cache | |
self.rope_theta = rope_theta | |
self.rope_scaling = rope_scaling | |
self._rope_scaling_validation() | |
self.attn_implementation = attn_implementation | |
if self.attn_implementation is None: | |
self.attn_implementation = 'eager' | |
super().__init__( | |
pad_token_id=pad_token_id, | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
tie_word_embeddings=tie_word_embeddings, | |
**kwargs, | |
) | |
def _rope_scaling_validation(self): | |
"""Validate the `rope_scaling` configuration.""" | |
if self.rope_scaling is None: | |
return | |
if not isinstance(self.rope_scaling, | |
dict) or len(self.rope_scaling) != 2: | |
raise ValueError( | |
'`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, ' | |
f'got {self.rope_scaling}') | |
rope_scaling_type = self.rope_scaling.get('type', None) | |
rope_scaling_factor = self.rope_scaling.get('factor', None) | |
if rope_scaling_type is None or rope_scaling_type not in [ | |
'linear', 'dynamic' | |
]: | |
raise ValueError( | |
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" | |
) | |
if rope_scaling_factor is None or not isinstance( | |
rope_scaling_factor, float) or rope_scaling_factor < 1.0: | |
raise ValueError( | |
f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}" | |
) | |