# A100 Zero GPU import spaces import time import torch import gradio as gr from PIL import Image from utils.utils import * from threading import Thread import torch.nn.functional as F from accelerate import Accelerator from meteor.load_mmamba import load_mmamba from meteor.load_meteor import load_meteor from transformers import TextIteratorStreamer from torchvision.transforms.functional import pil_to_tensor # flash attention import subprocess subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) # accel accel = Accelerator() # loading meteor model mmamba = load_mmamba('BK-Lee/Meteor-Mamba') meteor, tok_meteor = load_meteor('BK-Lee/Meteor-MLM', bits=4) # freeze model freeze_model(mmamba) freeze_model(meteor) # previous length previous_length = 0 def threading_function(inputs, image_token_number, streamer, device, temperature, new_max_token, top_p): # Meteor Mamba mmamba_inputs = mmamba.eval_process(inputs=inputs, tokenizer=tok_meteor, device=device, img_token_number=image_token_number) if 'image' in mmamba_inputs.keys(): clip_features = meteor.clip_features(mmamba_inputs['image']) mmamba_inputs.update({"image_features": clip_features}) mmamba_outputs = mmamba(**mmamba_inputs) # Meteor meteor_inputs = meteor.eval_process(inputs=inputs, data='demo', tokenizer=tok_meteor, device=device, img_token_number=image_token_number) if 'image' in mmamba_inputs.keys(): meteor_inputs.update({"image_features": clip_features}) meteor_inputs.update({"tor_features": mmamba_outputs.tor_features}) generation_kwargs = meteor_inputs generation_kwargs.update({'streamer': streamer}) generation_kwargs.update({'do_sample': True}) generation_kwargs.update({'max_new_tokens': new_max_token}) generation_kwargs.update({'top_p': top_p}) generation_kwargs.update({'temperature': temperature}) generation_kwargs.update({'use_cache': True}) return meteor.generate(**generation_kwargs) @spaces.GPU def bot_streaming(message, history, temperature, new_max_token, top_p): try: # param for param in mmamba.parameters(): param.data = param.to(accel.device) for param in meteor.parameters(): param.data = param.to(accel.device) # prompt type -> input prompt image_token_number = int((490/14)**2) if len(message['files']) != 0: # Image Load image = F.interpolate(pil_to_tensor(Image.open(message['files'][0]).convert("RGB")).unsqueeze(0), size=(490, 490), mode='bicubic').squeeze(0) inputs = [{'image': image, 'question': message['text']}] else: inputs = [{'question': message['text']}] # [4] Meteor Generation with torch.inference_mode(): # kwargs streamer = TextIteratorStreamer(tok_meteor, skip_special_tokens=True) # Threading generation thread = Thread(target=threading_function, kwargs=dict(inputs=inputs, image_token_number=image_token_number, streamer=streamer, device=accel.device, temperature=temperature, new_max_token=new_max_token, top_p=top_p)) thread.start() # generated text generated_text = "" for new_text in streamer: generated_text += new_text generated_text # Text decoding response = generated_text.split('assistant\n')[-1].split('[U')[0].strip() except: response = "There are no supported something: ex) pdf, video, sound, or any other unsupported multimodal format. only single image is supported in this version." buffer = "" for character in response: buffer += character time.sleep(0.015) yield buffer demo = gr.ChatInterface(fn=bot_streaming, additional_inputs = [gr.Slider(0, 1, 0.9, label="temperature"), gr.Slider(1, 1024, 128, label="new_max_token"), gr.Slider(0, 1, 0.95, label="top_p")], additional_inputs_accordion="Generation Hyperparameters", theme=gr.themes.Soft(), title="☄️Meteor", description="Meteor is efficient 7B size Large Language and Vision Model built on the help of traversal of rationale" "Its inference speed highly depends on assinging non-scheduled GPU (Therefore, once all GPUs are busy, then inference may be taken in infinity)", stop_btn="Stop Generation", multimodal=True) demo.launch()