import os import re import torch import torchaudio import gradio as gr import numpy as np import tempfile from einops import rearrange from ema_pytorch import EMA from vocos import Vocos from pydub import AudioSegment from model import CFM, UNetT, DiT, MMDiT from cached_path import cached_path from model.utils import ( get_tokenizer, convert_char_to_pinyin, save_spectrogram, ) from transformers import pipeline import spaces import librosa device = "cuda" if torch.cuda.is_available() else "cpu" pipe = pipeline( "automatic-speech-recognition", model="openai/whisper-large-v3-turbo", torch_dtype=torch.float16, device=device, ) # --------------------- Settings -------------------- # target_sample_rate = 24000 n_mel_channels = 100 hop_length = 256 target_rms = 0.1 nfe_step = 32 # 16, 32 cfg_strength = 2.0 ode_method = 'euler' sway_sampling_coef = -1.0 speed = 1.0 # fix_duration = 27 # None or float (duration in seconds) fix_duration = None def load_model(exp_name, model_cls, model_cfg, ckpt_step): checkpoint = torch.load(str(cached_path(f"hf://SWivid/F5-TTS/{exp_name}/model_{ckpt_step}.pt")), map_location=device) vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin") model = CFM( transformer=model_cls( **model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels ), mel_spec_kwargs=dict( target_sample_rate=target_sample_rate, n_mel_channels=n_mel_channels, hop_length=hop_length, ), odeint_kwargs=dict( method=ode_method, ), vocab_char_map=vocab_char_map, ).to(device) ema_model = EMA(model, include_online_model=False).to(device) ema_model.load_state_dict(checkpoint['ema_model_state_dict']) ema_model.copy_params_from_ema_to_model() return ema_model, model # load models F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4) E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4) F5TTS_ema_model, F5TTS_base_model = load_model("F5TTS_Base", DiT, F5TTS_model_cfg, 1200000) E2TTS_ema_model, E2TTS_base_model = load_model("E2TTS_Base", UNetT, E2TTS_model_cfg, 1200000) @spaces.GPU def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence): print(gen_text) if len(gen_text) > 200: raise gr.Error("Please keep your text under 200 chars.") gr.Info("Converting audio...") with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: aseg = AudioSegment.from_file(ref_audio_orig) audio_duration = len(aseg) if audio_duration > 15000: gr.Warning("Audio is over 15s, clipping to only first 15s.") aseg = aseg[:15000] aseg.export(f.name, format="wav") ref_audio = f.name if exp_name == "F5-TTS": ema_model = F5TTS_ema_model base_model = F5TTS_base_model elif exp_name == "E2-TTS": ema_model = E2TTS_ema_model base_model = E2TTS_base_model if not ref_text.strip(): gr.Info("No reference text provided, transcribing reference audio...") ref_text = outputs = pipe( ref_audio, chunk_length_s=30, batch_size=128, generate_kwargs={"task": "transcribe"}, return_timestamps=False, )['text'].strip() gr.Info("Finished transcription") else: gr.Info("Using custom reference text...") audio, sr = torchaudio.load(ref_audio) rms = torch.sqrt(torch.mean(torch.square(audio))) if rms < target_rms: audio = audio * target_rms / rms if sr != target_sample_rate: resampler = torchaudio.transforms.Resample(sr, target_sample_rate) audio = resampler(audio) audio = audio.to(device) # Prepare the text text_list = [ref_text + gen_text] final_text_list = convert_char_to_pinyin(text_list) # Calculate duration ref_audio_len = audio.shape[-1] // hop_length # if fix_duration is not None: # duration = int(fix_duration * target_sample_rate / hop_length) # else: zh_pause_punc = r"。,、;:?!" ref_text_len = len(ref_text) + len(re.findall(zh_pause_punc, ref_text)) gen_text_len = len(gen_text) + len(re.findall(zh_pause_punc, gen_text)) duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed) # inference gr.Info(f"Generating audio using {exp_name}") with torch.inference_mode(): generated, _ = base_model.sample( cond=audio, text=final_text_list, duration=duration, steps=nfe_step, cfg_strength=cfg_strength, sway_sampling_coef=sway_sampling_coef, ) generated = generated[:, ref_audio_len:, :] generated_mel_spec = rearrange(generated, '1 n d -> 1 d n') gr.Info("Running vocoder") vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz") generated_wave = vocos.decode(generated_mel_spec.cpu()) if rms < target_rms: generated_wave = generated_wave * rms / target_rms # wav -> numpy generated_wave = generated_wave.squeeze().cpu().numpy() if remove_silence: gr.Info("Removing audio silences") non_silent_intervals = librosa.effects.split(generated_wave, top_db=30) non_silent_wave = np.array([]) for interval in non_silent_intervals: start, end = interval non_silent_wave = np.concatenate([non_silent_wave, generated_wave[start:end]]) generated_wave = non_silent_wave # spectogram with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram: spectrogram_path = tmp_spectrogram.name save_spectrogram(generated_mel_spec[0].cpu().numpy(), spectrogram_path) return (target_sample_rate, generated_wave), spectrogram_path with gr.Blocks() as app: gr.Markdown(""" # E2/F5 TTS This is an unofficial E2/F5 TTS demo. This demo supports the following TTS models: * [E2-TTS](https://arxiv.org/abs/2406.18009) (Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS) * [F5-TTS](https://arxiv.org/abs/2410.06885) (A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching) This demo is based on the [F5-TTS](https://github.com/SWivid/F5-TTS) codebase, which is based on an [unofficial E2-TTS implementation](https://github.com/lucidrains/e2-tts-pytorch). The checkpoints support English and Chinese. **NOTE: Reference text will be automatically transcribed with Whisper if not provided. For best results, keep your reference clips short (<15s). Ensure the audio is fully uploaded before generating.** """) ref_audio_input = gr.Audio(label="Reference Audio", type="filepath") gen_text_input = gr.Textbox(label="Text to Generate (max 200 chars.)", lines=4) model_choice = gr.Radio(choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS") generate_btn = gr.Button("Synthesize", variant="primary") with gr.Accordion("Advanced Settings", open=False): ref_text_input = gr.Textbox(label="Reference Text", info="Leave blank to automatically transcribe the reference audio. If you enter text it will override automatic transcription.", lines=2) remove_silence = gr.Checkbox(label="[EXPERIMENTAL] Remove Silences", info="The model tends to leave silences, we can manually remove silences if needed. This may produce strange results and is not guarenteed to work.") audio_output = gr.Audio(label="Synthesized Audio") spectrogram_output = gr.Image(label="Spectrogram") generate_btn.click(infer, inputs=[ref_audio_input, ref_text_input, gen_text_input, model_choice, remove_silence], outputs=[audio_output, spectrogram_output]) gr.Markdown("Unofficial demo by [mrfakename](https://x.com/realmrfakename)") app.queue().launch()