blip-3o / blip3o /train /blip3o_trainer.py
multimodalart's picture
Upload 69 files
d0cbcd5 verified
raw
history blame
12.7 kB
import os
import torch
import torch.nn as nn
import numpy as np
from torch.utils.data import Sampler
from transformers import Trainer
from transformers.trainer import (
is_sagemaker_mp_enabled,
get_parameter_names,
has_length,
ALL_LAYERNORM_LAYERS,
logger,
)
from typing import List, Optional
from transformers.utils import is_torch_xla_available
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
from torch_xla import __version__ as XLA_VERSION
IS_XLA_FSDPV2_POST_2_2 = version.parse(XLA_VERSION) >= version.parse(XLA_FSDPV2_MIN_VERSION)
if IS_XLA_FSDPV2_POST_2_2:
import torch_xla.distributed.spmd as xs
import torch_xla.runtime as xr
else:
IS_XLA_FSDPV2_POST_2_2 = False
def maybe_zero_3(param, ignore_status=False, name=None):
from deepspeed import zero
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
if hasattr(param, "ds_id"):
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
if not ignore_status:
print(name, "no ignore status")
with zero.GatheredParameters([param]):
param = param.data.detach().cpu().clone()
else:
param = param.detach().cpu().clone()
return param
def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match):
to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)}
to_return = {k: maybe_zero_3(v, ignore_status=True, name=k).cpu() for k, v in to_return.items()}
return to_return
def split_to_even_chunks(indices, lengths, num_chunks):
"""
Split a list of indices into `chunks` chunks of roughly equal lengths.
"""
if len(indices) % num_chunks != 0:
return [indices[i::num_chunks] for i in range(num_chunks)]
num_indices_per_chunk = len(indices) // num_chunks
chunks = [[] for _ in range(num_chunks)]
chunks_lengths = [0 for _ in range(num_chunks)]
for index in indices:
shortest_chunk = chunks_lengths.index(min(chunks_lengths))
chunks[shortest_chunk].append(index)
chunks_lengths[shortest_chunk] += lengths[index]
if len(chunks[shortest_chunk]) == num_indices_per_chunk:
chunks_lengths[shortest_chunk] = float("inf")
return chunks
def get_modality_length_grouped_indices(lengths, batch_size, world_size, generator=None):
# We need to use torch for the random part as a distributed sampler will set the random seed for torch.
assert all(l != 0 for l in lengths), "Should not have zero length."
if all(l > 0 for l in lengths) or all(l < 0 for l in lengths):
# all samples are in the same modality
return get_length_grouped_indices(lengths, batch_size, world_size, generator=generator)
mm_indices, mm_lengths = zip(*[(i, l) for i, l in enumerate(lengths) if l > 0])
lang_indices, lang_lengths = zip(*[(i, -l) for i, l in enumerate(lengths) if l < 0])
mm_shuffle = [mm_indices[i] for i in get_length_grouped_indices(mm_lengths, batch_size, world_size, generator=None)]
lang_shuffle = [lang_indices[i] for i in get_length_grouped_indices(lang_lengths, batch_size, world_size, generator=None)]
megabatch_size = world_size * batch_size
mm_megabatches = [mm_shuffle[i : i + megabatch_size] for i in range(0, len(mm_shuffle), megabatch_size)]
lang_megabatches = [lang_shuffle[i : i + megabatch_size] for i in range(0, len(lang_shuffle), megabatch_size)]
last_mm = mm_megabatches[-1]
last_lang = lang_megabatches[-1]
additional_batch = last_mm + last_lang
megabatches = mm_megabatches[:-1] + lang_megabatches[:-1]
megabatch_indices = torch.randperm(len(megabatches), generator=generator)
megabatches = [megabatches[i] for i in megabatch_indices]
if len(additional_batch) > 0:
megabatches.append(sorted(additional_batch))
return [i for megabatch in megabatches for i in megabatch]
def get_length_grouped_indices(lengths, batch_size, world_size, generator=None, merge=True):
# We need to use torch for the random part as a distributed sampler will set the random seed for torch.
indices = torch.randperm(len(lengths), generator=generator)
megabatch_size = world_size * batch_size
megabatches = [indices[i : i + megabatch_size].tolist() for i in range(0, len(lengths), megabatch_size)]
megabatches = [sorted(megabatch, key=lambda i: lengths[i], reverse=True) for megabatch in megabatches]
megabatches = [split_to_even_chunks(megabatch, lengths, world_size) for megabatch in megabatches]
return [i for megabatch in megabatches for batch in megabatch for i in batch]
class LengthGroupedSampler(Sampler):
r"""
Sampler that samples indices in a way that groups together features of the dataset of roughly the same length while
keeping a bit of randomness.
"""
def __init__(
self,
batch_size: int,
world_size: int,
lengths: Optional[List[int]] = None,
generator=None,
group_by_modality: bool = False,
):
if lengths is None:
raise ValueError("Lengths must be provided.")
self.batch_size = batch_size
self.world_size = world_size
self.lengths = lengths
self.generator = generator
self.group_by_modality = group_by_modality
def __len__(self):
return len(self.lengths)
def __iter__(self):
if self.group_by_modality:
indices = get_modality_length_grouped_indices(self.lengths, self.batch_size, self.world_size, generator=self.generator)
else:
indices = get_length_grouped_indices(self.lengths, self.batch_size, self.world_size, generator=self.generator)
return iter(indices)
class blip3oTrainer(Trainer):
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
if self.train_dataset is None or not has_length(self.train_dataset):
return None
if self.args.group_by_modality_length:
lengths = self.train_dataset.modality_lengths
return LengthGroupedSampler(
self.args.train_batch_size,
world_size=self.args.world_size * self.args.gradient_accumulation_steps,
lengths=lengths,
group_by_modality=True,
)
else:
return super()._get_train_sampler()
# def _maybe_log_save_evaluate(self, tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval, start_time):
# if not hasattr(self, "largest_loss"):
# self.largest_loss = tr_loss.item()
# self.largest_grad_norm = grad_norm
# self.latest_grad_norm = grad_norm
# else:
# if tr_loss.item() > 10 * self.largest_loss:
# print(f"Loss Spiked: {tr_loss.item()} -> {self.largest_loss}")
# self.control.should_training_stop = True
# if grad_norm > 10 * self.latest_grad_norm and grad_norm > 3:
# print(f"Grad Norm Spiked: {grad_norm} -> {self.latest_grad_norm}")
# self.control.should_training_stop = True
# self.largest_loss = max(tr_loss.item(), self.largest_loss)
# self.largest_grad_norm = max(grad_norm, self.largest_grad_norm)
# self.latest_grad_norm = grad_norm
# if np.isnan(grad_norm) or grad_norm > 1e6:
# print(f"NaN grad norm detected in process {self.args.process_index} on {os.uname().nodename}")
# self.control.should_training_stop = True
# print(f"Shut Down Training")
# if self.control.should_log and self.state.global_step > self._globalstep_last_logged:
# if is_torch_xla_available():
# xm.mark_step()
# logs: Dict[str, float] = {}
# # all_gather + mean() to get average loss over all processes
# tr_loss_scalar = self._nested_gather(tr_loss).mean().item()
# # reset tr_loss to zero
# tr_loss -= tr_loss
# logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4)
# if grad_norm is not None:
# logs["grad_norm"] = grad_norm.detach().item() if isinstance(grad_norm, torch.Tensor) else grad_norm
# logs["learning_rate"] = self._get_learning_rate()
# self._total_loss_scalar += tr_loss_scalar
# self._globalstep_last_logged = self.state.global_step
# self.store_flos()
# self.log(logs, start_time)
# metrics = None
# if self.control.should_evaluate:
# metrics = self._evaluate(trial, ignore_keys_for_eval)
# is_new_best_metric = self._determine_best_metric(metrics=metrics, trial=trial)
# if self.args.save_strategy == SaveStrategy.BEST:
# self.control.should_save = is_new_best_metric
# if self.control.should_save:
# self._save_checkpoint(model, trial)
# self.control = self.callback_handler.on_save(self.args, self.state, self.control)
def create_optimizer(self):
"""
Setup the optimizer.
We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
Trainer's init through `optimizers`, or subclass and override this method in a subclass.
"""
if is_sagemaker_mp_enabled():
return super().create_optimizer()
opt_model = self.model
if self.optimizer is None:
decay_parameters = get_parameter_names(opt_model, ALL_LAYERNORM_LAYERS)
decay_parameters = [name for name in decay_parameters if "bias" not in name]
if self.args.mm_projector_lr is not None:
projector_parameters = [name for name, _ in opt_model.named_parameters() if "mm_projector" in name]
optimizer_grouped_parameters = [
{
"params": [p for n, p in opt_model.named_parameters() if (n in decay_parameters and n not in projector_parameters and p.requires_grad)],
"weight_decay": self.args.weight_decay,
},
{
"params": [p for n, p in opt_model.named_parameters() if (n not in decay_parameters and n not in projector_parameters and p.requires_grad)],
"weight_decay": 0.0,
},
{
"params": [p for n, p in opt_model.named_parameters() if (n in decay_parameters and n in projector_parameters and p.requires_grad)],
"weight_decay": self.args.weight_decay,
"lr": self.args.mm_projector_lr,
},
{
"params": [p for n, p in opt_model.named_parameters() if (n not in decay_parameters and n in projector_parameters and p.requires_grad)],
"weight_decay": 0.0,
"lr": self.args.mm_projector_lr,
},
]
else:
optimizer_grouped_parameters = [
{
"params": [p for n, p in opt_model.named_parameters() if (n in decay_parameters and p.requires_grad)],
"weight_decay": self.args.weight_decay,
},
{
"params": [p for n, p in opt_model.named_parameters() if (n not in decay_parameters and p.requires_grad)],
"weight_decay": 0.0,
},
]
optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(self.args)
self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)
if optimizer_cls.__name__ == "Adam8bit":
import bitsandbytes
manager = bitsandbytes.optim.GlobalOptimManager.get_instance()
skipped = 0
for module in opt_model.modules():
if isinstance(module, nn.Embedding):
skipped += sum({p.data_ptr(): p.numel() for p in module.parameters()}.values())
logger.info(f"skipped {module}: {skipped/2**20}M params")
manager.register_module_override(module, "weight", {"optim_bits": 32})
logger.debug(f"bitsandbytes: will optimize {module} in fp32")
logger.info(f"skipped: {skipped/2**20}M params")
return self.optimizer