File size: 11,465 Bytes
8c12665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5df2fe
 
8c12665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aebb77d
8c12665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29ae74e
8c12665
 
2d38cb5
8c12665
 
 
2d38cb5
29ae74e
8c12665
 
 
 
 
 
 
 
 
fb5ed1a
 
8c12665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5df2fe
8c12665
 
 
 
 
 
 
 
2d38cb5
29ae74e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5df2fe
29ae74e
 
 
 
 
 
 
 
 
 
 
fb5ed1a
29ae74e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d38cb5
29ae74e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c12665
2d38cb5
8c12665
 
 
 
 
 
 
 
 
 
 
 
 
 
e5df2fe
29ae74e
e5df2fe
8c12665
 
2d38cb5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import streamlit as st
from PIL import Image
import os
import easyocr
import numpy as np
import fitz  # PyMuPDF
import io
from pdf2image import convert_from_bytes
#from st_btn_group import st_btn_group
#from streamlit_option_menu import option_menu
import docx
from io import BytesIO  
#import streamlit.components.v1 as components
import base64

line_separator = "\n\n"

#def downloadTxt():
def generateTxtLink(result):
    result_txt = ""
    print(result)
    for para in result:
        result_txt += para[1]+"\n"
    result_b64 = base64.b64encode(result_txt.encode()).decode('utf-8')
    result_txt_link = "<a class='button' href='data:text/plain;base64,"+result_b64+"' download='document.txt'>TXT</a>"
    return result_txt_link

def generateMultiPageTxtLink(result):
    result_txt = ""
    print(result)
    for para in result:
        result_txt += para+"\n"
    result_b64 = base64.b64encode(result_txt.encode()).decode('utf-8')
    result_txt_link = "<a class='button' href='data:text/plain;base64,"+result_b64+"' download='document.txt'>TXT</a>"
    return result_txt_link

def generateDocLink(result):
    doc = docx.Document()
    for para in result:
        doc.add_paragraph(para[1])

    target_stream = BytesIO()
    result_doc = doc.save(target_stream)
    base64_doc = base64.b64encode(target_stream.getvalue()).decode('utf-8')
    stlyeCss = ""
    doc_link = "<a class='button' href='data:application/pdf;base64,"+base64_doc+"' download='document.docx'>DOCX</a>"
    return doc_link

def generateMultiPageDocLink(pages_result):
    doc = docx.Document()
    #print(pages_result)
    for page in pages_result:
        page_split = page.split("\n")
        for para in page_split:
            doc.add_paragraph(para)
        doc.add_page_break()
    target_stream = BytesIO()
    result_doc = doc.save(target_stream)
    base64_doc = base64.b64encode(target_stream.getvalue()).decode('utf-8')
    doc_link = "<a class='button' href='data:application/pdf;base64,"+base64_doc+"' download='document.docx'>DOCX</a>"
    return doc_link

def generateButtonGroup(result):
    txtLink = generateTxtLink(result)
    docLink = generateDocLink(result)
    return txtLink+"\n"+docLink

def generateButtonGroupForPDF(pages_result):
    txtLink = generateMultiPageTxtLink(pages_result)
    docLink = generateMultiPageDocLink(pages_result)
    return txtLink+"\n"+docLink

def local_css(file_name):
    with open(file_name) as f:
        st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)


models_dir = "./models"
output_dir = "./output"
dirs = [models_dir, output_dir]
for d in dirs:
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

font_path = models_dir + "/Ubuntu-Regular.ttf"
reader = easyocr.Reader(
    ['en'],
    gpu=True,
    recog_network='best_norm_ED',
    detect_network="craft",
    user_network_directory=models_dir,
    model_storage_directory=models_dir,
)  # this needs to run only once to load the model into memory




# main title
st.set_page_config(layout="wide",page_title="Қазақша OCR, суреттегі текстті тану")
local_css("app.css")
#st.markdown("<a class='button' href='lenta.ru'>DOCX жүктеп ал</a>",unsafe_allow_html=True)
st.title("Сурет немесе пдф файлдан текст алу")
# subtitle
#st.markdown("## Qazaq OCR")

uploaded_file = st.file_uploader("Өз файлыңызды осында жүктеңіз ('png', 'jpeg', 'jpg', 'pdf')",help="aaa", type=['png', 'jpeg', 'jpg', 'pdf'])

col1, col2 = st.columns(2)


import time

max_page = 5
def recognize_page_image(image):
    start = time.time()
    result = [[0,"Sample 1"],[1,"Sample 2"]]
    result = reader.readtext(np.array(image), batch_size=64, paragraph=False, y_ths=0, width_ths = 0)
    result = get_paragraph(result)
    end = time.time()
    return result,(end-start)


def process_pdf(uploaded_file):
    pdf_document = fitz.open(temp_pdf_file)
    total_pages = len(pdf_document)
    progress_bar = col2.progress(0, text="Жүктеліп жатыр")
    button_group = col2.container()
    # clear the container
    button_group.empty()
    pages = range(min(max_page,total_pages))
    tabs = col1.tabs([f"Бет {page+1}" for page in pages])
    pages_result = []
    for count, page_num in enumerate(range(min(total_pages,max_page))):
        page = pdf_document.load_page(page_num)
        image_matrix = fitz.Matrix(fitz.Identity)
        pixmap = page.get_pixmap(matrix=image_matrix, dpi=300)
        image_data = pixmap.samples  # This is a bytes object
        image = Image.frombytes("RGB", (pixmap.width, pixmap.height), image_data)
        imageSmaller = image.resize((int(pixmap.width/10), int(pixmap.height/10)))
        tabs[count].image(imageSmaller)
        #buffered = BytesIO()
        #imageSmaller.save(buffered,format="JPEG")
        #col1.write(f'<h2>Бет {page_num + 1}/{total_pages}</h2>',unsafe_allow_html=True)
        #col1.write(f'<img src="data:image/png;base64, {base64.b64encode(buffered.getvalue()).decode("utf-8")}"/>',unsafe_allow_html=True)
        #col1.subheader(f'Бет {page_num + 1}/{total_pages}')
        #col1.image(imageSmaller, caption=f'Бет {page_num + 1}')
        result,time_elapsed = recognize_page_image(image)
        expander = col2.expander(f'{result[0][1][:100]} ... **:orange[{time_elapsed:.3f} секундта таңылды]**')
        expander.write(f'{result[0][1]}')
        result_text = line_separator.join([item[1] for item in result])
        pages_result.append(result_text)
        #col2.markdown(result_text)
        progress_bar.progress((count + 1) / min(total_pages,max_page),text=f'Жүктеліп жатыр {count+1}/{min(total_pages,max_page)}')
    
    button_group_html = generateButtonGroupForPDF(pages_result)
    button_group.write(button_group_html,unsafe_allow_html=True)
    #col1.write("</div>",unsafe_allow_html=True)
    progress_bar.progress(0.99,text=f'{min(total_pages,max_page)} бет жүктелді')

class TextBox:
    def __init__(self, text, coordinates):
        # order: topLeft, bottomLeft, bottomRight, topRight
        x_coords = [int(coord[0]) for coord in coordinates]
        y_coords = [int(coord[1]) for coord in coordinates]
        
        self.text = text
        self.min_x = min(x_coords)
        self.max_x = max(x_coords)
        self.min_y = min(y_coords)
        self.max_y = max(y_coords)
        self.height = self.max_y - self.min_y
        self.center_y = 0.5 * (self.min_y + self.max_y)
        self.group_id = 0  # Initially ungrouped
    
    def __repr__(self):
        return f"TextBox(text={self.text}, group_id={self.group_id})"


def get_paragraph(ocr_results, horizontal_threshold=1, vertical_threshold=0.0, reading_mode='ltr'):
    # Convert raw OCR results into TextBox objects
    text_boxes = [TextBox(box[1], box[0]) for box in ocr_results]
    
    # Group the boxes into paragraphs
    current_group_id = 1
    while any(box.group_id == 0 for box in text_boxes):  # While there are ungrouped boxes
        ungrouped_boxes = [box for box in text_boxes if box.group_id == 0]

        # Start a new group if none exists for the current group_id
        if all(box.group_id != current_group_id for box in text_boxes):
            ungrouped_boxes[0].group_id = current_group_id  # Assign the first ungrouped box to the new group
        else:
            # Try to add boxes to the current group
            current_group_boxes = [box for box in text_boxes if box.group_id == current_group_id]
            average_height = np.mean([box.height for box in current_group_boxes])
            added_to_group = False

            for group_box in current_group_boxes:
                min_group_x = group_box.min_x - horizontal_threshold * average_height
                max_group_x = group_box.max_x + horizontal_threshold * average_height
                min_group_y = group_box.min_y - vertical_threshold * average_height
                max_group_y = group_box.max_y + vertical_threshold * average_height

                for ungrouped_box in ungrouped_boxes:
                    horizontally_aligned = (min_group_x <= ungrouped_box.min_x <= max_group_x) or (min_group_x <= ungrouped_box.max_x <= max_group_x)
                    vertically_aligned = (min_group_y <= ungrouped_box.center_y <= max_group_y)

                    if horizontally_aligned and vertically_aligned:
                        ungrouped_box.group_id = current_group_id
                        added_to_group = True
                        break

            # If no box was added to the current group, move to the next group
            if not added_to_group:
                current_group_id += 1

    # Arrange the text order within each group to form paragraphs
    paragraphs = []
    for group_id in set(box.group_id for box in text_boxes):
        boxes_in_group = [box for box in text_boxes if box.group_id == group_id]
        average_height = np.mean([box.height for box in boxes_in_group])
        min_group_x = min([box.min_x for box in boxes_in_group])
        max_group_x = max([box.max_x for box in boxes_in_group])
        min_group_y = min([box.min_y for box in boxes_in_group])
        max_group_y = max([box.max_y for box in boxes_in_group])

        paragraph_text = ''
        while boxes_in_group:
            highest_y = min([box.center_y for box in boxes_in_group])
            line_candidates = [box for box in boxes_in_group if box.center_y < highest_y + 0.4 * average_height]
            
            # Determine the left-most or right-most box based on reading mode
            if reading_mode == 'ltr':
                left_most_x = min([box.min_x for box in line_candidates])
                for box in line_candidates:
                    if box.min_x == left_most_x:
                        selected_box = box
            elif reading_mode == 'rtl':
                right_most_x = max([box.max_x for box in line_candidates])
                for box in line_candidates:
                    if box.max_x == right_most_x:
                        selected_box = box

            paragraph_text += ' ' + selected_box.text
            boxes_in_group.remove(selected_box)

        # Append the bounding box and text for the paragraph
        paragraphs.append([[[min_group_x, min_group_y], [max_group_x, min_group_y], [max_group_x, max_group_y], [min_group_x, max_group_y]], paragraph_text.strip()])

    return paragraphs


if uploaded_file is not None:
    if uploaded_file.type == "application/pdf":
        placeholder = col2.empty()
        with placeholder, st.spinner('PDF өңделуде ...'):
            temp_pdf_file = "./temp_pdf_file.pdf"
            with open(temp_pdf_file, "wb") as f:
                f.write(uploaded_file.read())
            process_pdf(uploaded_file)
    else:
        placeholder = col2.empty()
        with placeholder,st.spinner('Сурет өңделуде ...'):
            image = Image.open(uploaded_file)
            #with open(os.path.join("tempDir",image_file))
            col1.image(image)
            result = reader.readtext(np.array(image), batch_size=64, paragraph=False, y_ths=0, width_ths = 0)
            result = get_paragraph(result)
            result_text = line_separator.join([item[1] for item in result])
            button_group_html = generateButtonGroup(result)
            col2.write(button_group_html, unsafe_allow_html=True)
            col2.markdown(result_text)