File size: 10,612 Bytes
e3a55fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import streamlit as st
from PIL import Image
import os
import easyocr
import numpy as np
import fitz  # PyMuPDF
import io
from pdf2image import convert_from_bytes
#from st_btn_group import st_btn_group
#from streamlit_option_menu import option_menu
import docx
from docx.shared import Pt
from io import BytesIO  
#import streamlit.components.v1 as components
import base64

#def downloadTxt():
def generateTxtLink(result):
    result_txt = ""
    print(result)
    for para in result:
        result_txt += para[1]+"\n"
    result_b64 = base64.b64encode(result_txt.encode()).decode('utf-8')
    result_txt_link = "<a class='button' href='data:text/plain;base64,"+result_b64+"' download='document.txt'>TXT</a>"
    return result_txt_link

def generateMultiPageTxtLink(result):
    result_txt = ""
    print(result)
    for para in result:
        result_txt += para+"\n"
    result_b64 = base64.b64encode(result_txt.encode()).decode('utf-8')
    result_txt_link = "<a class='button' href='data:text/plain;base64,"+result_b64+"' download='document.txt'>TXT</a>"
    return result_txt_link

def generateDocLink(result):
    doc = docx.Document()
    for para in result:
        doc.add_paragraph(para[1])

    target_stream = BytesIO()
    result_doc = doc.save(target_stream)
    base64_doc = base64.b64encode(target_stream.getvalue()).decode('utf-8')
    stlyeCss = ""
    doc_link = "<a class='button' href='data:application/pdf;base64,"+base64_doc+"' download='document.docx'>DOCX</a>"
    return doc_link

def generateMultiPageDocLink(pages_result):
    doc = docx.Document()
    #print(pages_result)
    for page in pages_result:
        page_split = page.split("\n")
        for para in page_split:
            doc.add_paragraph(para)
        doc.add_page_break()
    target_stream = BytesIO()
    result_doc = doc.save(target_stream)
    base64_doc = base64.b64encode(target_stream.getvalue()).decode('utf-8')
    doc_link = "<a class='button' href='data:application/pdf;base64,"+base64_doc+"' download='document.docx'>DOCX</a>"
    return doc_link

def generateButtonGroup(result):
    txtLink = generateTxtLink(result)
    docLink = generateDocLink(result)
    return txtLink+"\n"+docLink

def generateButtonGroupForPDF(pages_result):
    #result = "\n\n".join(pages_result)
    txtLink = generateMultiPageTxtLink(pages_result)
    docLink = generateMultiPageDocLink(pages_result)
    return txtLink+"\n"+docLink

def local_css(file_name):
    with open(file_name) as f:
        st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)


models_dir = "./models"
output_dir = "./output"
dirs = [models_dir, output_dir]
for d in dirs:
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

font_path = models_dir + "/Ubuntu-Regular.ttf"
reader = easyocr.Reader(
    ['en'],
    gpu=True,
    recog_network='best_norm_ED',
    detect_network="craft",
    user_network_directory=models_dir,
    model_storage_directory=models_dir,
)  # this needs to run only once to load the model into memory




# main title
st.set_page_config(layout="wide",page_title="Қазақша OCR, суреттегі текстті тану")
local_css("app.css")
#st.markdown("<a class='button' href='lenta.ru'>DOCX жүктеп ал</a>",unsafe_allow_html=True)
st.title("Сурет немесе пдф файлдан текст алу")
# subtitle
#st.markdown("## Qazaq OCR")

uploaded_file = st.file_uploader("Өз файлыңызды осында жүктеңіз ('png', 'jpeg', 'jpg', 'pdf')",help="aaa", type=['png', 'jpeg', 'jpg', 'pdf'])

col1, col2 = st.columns(2)

#def process_page(page):
#    image_matrix = fitz.Matrix(fitz.Identity)
#    pixmap = page.get_pixmap(matrix=image_matrix, dpi=300)
#    image_data = pixmap.samples# This is a bytes object
#    image = Image.from("RGB",(pixmap.width, pixmap.height),image_data)
#    image =  Image.from("RGB", (pixmap.width, pixmap.height), image_data)
#    result = reader.readtext(np.array(image),paragraph=True)
#    return image, result 
import time

max_page = 5
def recognize_page_image(image):
    start = time.time()
    result = [[0,"Sample 1"],[1,"Sample 2"]]
    result = reader.readtext(np.array(image), paragraph=False)
    result = get_paragraph(result)
    end = time.time()
    return result,(end-start)


def process_pdf(uploaded_file):
    pdf_document = fitz.open(temp_pdf_file)
    total_pages = len(pdf_document)
    progress_bar = col2.progress(0, text="Жүктеліп жатыр")
    button_group = col2.container()
    # clear the container
    button_group.empty()
    pages = range(min(max_page,total_pages))
    tabs = col1.tabs([f"Бет {page+1}" for page in pages])
    pages_result = []
    for count, page_num in enumerate(range(min(total_pages,max_page))):
        page = pdf_document.load_page(page_num)
        image_matrix = fitz.Matrix(fitz.Identity)
        pixmap = page.get_pixmap(matrix=image_matrix, dpi=300)
        image_data = pixmap.samples  # This is a bytes object
        image = Image.frombytes("RGB", (pixmap.width, pixmap.height), image_data)
        imageSmaller = image.resize((int(pixmap.width/10), int(pixmap.height/10)))
        tabs[count].image(imageSmaller)
        #buffered = BytesIO()
        #imageSmaller.save(buffered,format="JPEG")
        #col1.write(f'<h2>Бет {page_num + 1}/{total_pages}</h2>',unsafe_allow_html=True)
        #col1.write(f'<img src="data:image/png;base64, {base64.b64encode(buffered.getvalue()).decode("utf-8")}"/>',unsafe_allow_html=True)
        #col1.subheader(f'Бет {page_num + 1}/{total_pages}')
        #col1.image(imageSmaller, caption=f'Бет {page_num + 1}')
        result,time_elapsed = recognize_page_image(image)
        expander = col2.expander(f'{result[0][1][:100]} ... **:orange[{time_elapsed:.3f} секундта таңылды]**')
        expander.write(f'{result[0][1]}')
        result_text = "\n\n".join([item[1] for item in result])
        pages_result.append(result_text)
        #col2.markdown(result_text)
        progress_bar.progress((count + 1) / min(total_pages,max_page),text=f'Жүктеліп жатыр {count+1}/{min(total_pages,max_page)}')
    
    button_group_html = generateButtonGroupForPDF(pages_result)
    button_group.write(button_group_html,unsafe_allow_html=True)
    #col1.write("</div>",unsafe_allow_html=True)
    progress_bar.progress(0.99,text=f'{min(total_pages,max_page)} бет жүктелді')
    
def get_paragraph(raw_result, x_ths=1, y_ths=0.5, mode = 'ltr'):
    # create basic attributes
    box_group = []
    for box in raw_result:
        all_x = [int(coord[0]) for coord in box[0]]
        all_y = [int(coord[1]) for coord in box[0]]
        min_x = min(all_x)
        max_x = max(all_x)
        min_y = min(all_y)
        max_y = max(all_y)
        height = max_y - min_y
        box_group.append([box[1], min_x, max_x, min_y, max_y, height, 0.5*(min_y+max_y), 0]) # last element indicates group
    # cluster boxes into paragraph
    current_group = 1
    while len([box for box in box_group if box[7]==0]) > 0:
        box_group0 = [box for box in box_group if box[7]==0] # group0 = non-group
        # new group
        if len([box for box in box_group if box[7]==current_group]) == 0:
            box_group0[0][7] = current_group # assign first box to form new group
        # try to add group
        else:
            current_box_group = [box for box in box_group if box[7]==current_group]
            mean_height = np.mean([box[5] for box in current_box_group])
            min_gx = min([box[1] for box in current_box_group]) - x_ths*mean_height
            max_gx = max([box[2] for box in current_box_group]) + x_ths*mean_height
            min_gy = min([box[3] for box in current_box_group]) - y_ths*mean_height
            max_gy = max([box[4] for box in current_box_group]) + y_ths*mean_height
            add_box = False
            for box in box_group0:
                same_horizontal_level = (min_gx<=box[1]<=max_gx) or (min_gx<=box[2]<=max_gx)
                same_vertical_level = (min_gy<=box[3]<=max_gy) or (min_gy<=box[4]<=max_gy)
                if same_horizontal_level and same_vertical_level:
                    box[7] = current_group
                    add_box = True
                    break
            # cannot add more box, go to next group
            if add_box==False:
                current_group += 1
    # arrage order in paragraph
    result = []
    for i in set(box[7] for box in box_group):
        current_box_group = [box for box in box_group if box[7]==i]
        mean_height = np.mean([box[5] for box in current_box_group])
        min_gx = min([box[1] for box in current_box_group])
        max_gx = max([box[2] for box in current_box_group])
        min_gy = min([box[3] for box in current_box_group])
        max_gy = max([box[4] for box in current_box_group])

        text = ''
        while len(current_box_group) > 0:
            highest = min([box[6] for box in current_box_group])
            candidates = [box for box in current_box_group if box[6]<highest+0.4*mean_height]
            # get the far left
            if mode == 'ltr':
                most_left = min([box[1] for box in candidates])
                for box in candidates:
                    if box[1] == most_left: best_box = box
            elif mode == 'rtl':
                most_right = max([box[2] for box in candidates])
                for box in candidates:
                    if box[2] == most_right: best_box = box
            text += ' '+best_box[0]
            current_box_group.remove(best_box)

        result.append([ [[min_gx,min_gy],[max_gx,min_gy],[max_gx,max_gy],[min_gx,max_gy]], text[1:]])

    return result

if uploaded_file is not None:
    if uploaded_file.type == "application/pdf":
        placeholder = col2.empty()
        with placeholder, st.spinner('PDF өңделуде ...'):
            temp_pdf_file = "./temp_pdf_file.pdf"
            with open(temp_pdf_file, "wb") as f:
                f.write(uploaded_file.read())
            process_pdf(uploaded_file)
    else:
        placeholder = col2.empty()
        with placeholder,st.spinner('Сурет өңделуде ...'):
            image = Image.open(uploaded_file)
            #with open(os.path.join("tempDir",image_file))
            col1.image(image)
            result = reader.readtext(np.array(image), paragraph=True)
            result_text = "\n\n".join([item[1] for item in result])
            button_group_html = generateButtonGroup(result)
            col2.write(button_group_html, unsafe_allow_html=True)
            col2.markdown(result_text)