import streamlit as st from transformers import pipeline print("Loading the model...") # Title and Description st.title("Sentiment Analysis Web App") st.write(""" ### Powered by Hugging Face and Streamlit This app uses a pre-trained NLP model from Hugging Face to analyze the sentiment of the text you enter. Try entering a sentence to see if it's positive, negative, or neutral! """) # Initialize Hugging Face Sentiment Analysis Pipeline @st.cache_resource def load_model(): print("before load model") return pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english") sentiment_analyzer = load_model() # Input Text from User user_input = st.text_area("Enter some text to analyze:", "Streamlit and Hugging Face make NLP fun!") # Analyze Sentiment if st.button("Analyze Sentiment"): print("button click") if user_input.strip(): result = sentiment_analyzer(user_input)[0] sentiment = result['label'] score = result['score'] # Display the Result st.subheader("Sentiment Analysis Result") st.write(f"**Sentiment:** {sentiment}") st.write(f"**Confidence Score:** {score:.2f}") else: st.warning("Please enter some text to analyze!") # Sidebar with About Information st.sidebar.title("About") st.sidebar.info(""" This app demonstrates the use of Hugging Face's NLP models with Streamlit. It uses the `distilbert-base-uncased-finetuned-sst-2-english` model for sentiment analysis. """) print("after")