Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,061 Bytes
c4dca95 b7fa1b5 c4dca95 b7fa1b5 c4dca95 b7fa1b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import os
from pyannote.audio import Pipeline
from pydub import AudioSegment
from transformers import WhisperForConditionalGeneration, WhisperProcessor
import torchaudio
import torch
device = 0 if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float32
MODEL_NAME = "openai/whisper-large-v3"
model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME, torch_dtype=torch_dtype).to(device)
processor = WhisperProcessor.from_pretrained(MODEL_NAME)
pipeline_vad = Pipeline.from_pretrained("./pyannote/config.yaml")
threshold = 15000 # adjust max duration threshold
segments_dir = "."
def clean_text(input_text):
remove_chars = ['.', ',', ';', ':', '¿', '?', '«', '»', '-', '¡', '!', '@',
'*', '{', '}', '[', ']', '=', '/', '\\', '&', '#', '…']
output_text = ''.join(char if char not in remove_chars else ' ' for char in input_text) #removing special chars
return (' '.join(output_text.split()).lower()) #remove extra spaces and return cleaned text
def convert_forced_to_tokens(forced_decoder_ids):
forced_decoder_tokens = []
for i, (idx, token) in enumerate(forced_decoder_ids):
if token is not None:
forced_decoder_tokens.append([idx, processor.tokenizer.decode(token)])
else:
forced_decoder_tokens.append([idx, token])
return forced_decoder_tokens
def generate_1st_chunk(audio):
input_audio, sample_rate = torchaudio.load(audio)
input_audio = torchaudio.transforms.Resample(sample_rate, 16000)(input_audio)
input_speech = input_audio[0]
input_features = processor(input_speech,
sampling_rate=16_000,
return_tensors="pt", torch_dtype=torch_dtype).input_features.to(device)
forced_decoder_ids = []
forced_decoder_ids.append([1,50270]) #[1, '<|ca|>']
forced_decoder_ids.append([2,50262]) #[2, '<|es|>']
forced_decoder_ids.append([3,50360]) #[3, '<|transcribe|>']
forced_decoder_ids_modified = forced_decoder_ids
# we need to force these tokens
forced_decoder_ids = []
# now we need to append the prefix tokens (lang, task, timestamps)
offset = len(forced_decoder_ids)
for idx, token in forced_decoder_ids_modified:
forced_decoder_ids.append([idx + offset , token])
model.generation_config.forced_decoder_ids = forced_decoder_ids
pred_ids = model.generate(input_features,
return_timestamps=True,
max_new_tokens=128)
#exclude prompt from output
forced_decoder_tokens = convert_forced_to_tokens(forced_decoder_ids)
output = processor.decode(pred_ids[0][len(forced_decoder_tokens) + 1:], skip_special_tokens=True)
return output[1:]
def generate_from_2nd_chunk(audio, prev_prompt):
input_audio, sample_rate = torchaudio.load(audio)
input_audio = torchaudio.transforms.Resample(sample_rate, 16000)(input_audio)
input_speech = input_audio[0]
input_features = processor(input_speech,
sampling_rate=16_000,
return_tensors="pt", torch_dtype=torch_dtype).input_features.to(device)
forced_decoder_ids = []
forced_decoder_ids.append([1,50270]) #[1, '<|ca|>']
forced_decoder_ids.append([2,50262]) #[2, '<|es|>']
forced_decoder_ids.append([3,50360]) #[3, '<|transcribe|>']
forced_decoder_ids_modified = forced_decoder_ids
idx = processor.tokenizer.all_special_tokens.index("<|startofprev|>")
forced_bos_token_id = processor.tokenizer.all_special_ids[idx]
prompt_tokens = processor.tokenizer(prev_prompt, add_special_tokens=False).input_ids
# we need to force these tokens
forced_decoder_ids = []
for idx, token in enumerate(prompt_tokens):
# indexing starts from 1 for forced tokens (token at position 0 is the SOS token)
forced_decoder_ids.append([idx + 1, token])
# now we add the SOS token at the end
offset = len(forced_decoder_ids)
forced_decoder_ids.append([offset + 1, model.generation_config.decoder_start_token_id])
# now we need to append the rest of the prefix tokens (lang, task, timestamps)
offset = len(forced_decoder_ids)
for idx, token in forced_decoder_ids_modified:
forced_decoder_ids.append([idx + offset , token])
model.generation_config.forced_decoder_ids = forced_decoder_ids
pred_ids = model.generate(input_features,
return_timestamps=True,
max_new_tokens=128,
decoder_start_token_id=forced_bos_token_id)
#exclude prompt from output
forced_decoder_tokens = convert_forced_to_tokens(forced_decoder_ids)
output = processor.decode(pred_ids[0][len(forced_decoder_tokens) + 1:], skip_special_tokens=True)
return output[1:]
def processing_vad_v3(audio, output_vad, prev_prompt):
transcription_audio = ""
first_chunk = True
for speech in output_vad.get_timeline().support():
start, end = speech.start, speech.end
segment_audio = audio[start * 1000:end * 1000]
filename = os.path.join(segments_dir, f"temp_segment.wav")
segment_audio.export(filename, format="wav")
if first_chunk:
output = generate_1st_chunk(filename)
first_chunk = False
else:
output = generate_from_2nd_chunk(filename, prev_prompt)
prev_prompt = output
transcription_audio = transcription_audio + " " + output
return transcription_audio
def processing_vad_v4(audio, output_vad, threshold, max_duration, prev_prompt, concatenated_segment):
transcription_audio = ""
is_first_chunk = True
for speech in output_vad.get_timeline().support():
start, end = speech.start, speech.end
segment_duration = (end - start) * 1000
segment_audio = audio[start * 1000:end * 1000]
if max_duration + segment_duration < threshold:
concatenated_segment += audio[start * 1000:end * 1000]
max_duration += segment_duration
else:
if len(concatenated_segment) > 0:
temp_segment_path = os.path.join(segments_dir, f"temp_segment.wav")
concatenated_segment.export(temp_segment_path, format="wav")
if is_first_chunk:
output = generate_1st_chunk(temp_segment_path)
is_first_chunk = False
else:
output = generate_from_2nd_chunk(temp_segment_path, prev_prompt)
prev_prompt = output
transcription_audio = transcription_audio + output
max_duration = segment_duration
concatenated_segment = segment_audio
# Process any remaining audio in the concatenated_segment
if len(concatenated_segment) > 0:
temp_segment_path = os.path.join(segments_dir, f"temp_segment.wav")
concatenated_segment.export(temp_segment_path, format="wav")
output = generate_from_2nd_chunk(temp_segment_path, prev_prompt)
prev_prompt = output
transcription_audio = transcription_audio + output
return transcription_audio
def generate(audio_path, use_v4):
#check audio lenght
audio = AudioSegment.from_wav(audio_path)
duration_seconds = len(audio) / 1000.0
#apply VAD only if the duration is >30s
if duration_seconds >= 30:
output_vad = pipeline_vad(audio_path)
concatenated_segment = AudioSegment.empty()
max_duration = 0
prev_prompt = ""
if use_v4:
return processing_vad_v4(audio, output_vad, threshold, max_duration, prev_prompt, concatenated_segment)
else:
return processing_vad_v3(audio, output_vad, prev_prompt)
else:
#if duraion is <30s, process directly with generate
return generate_1st_chunk(audio_path)
|