Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,741 Bytes
b7fa1b5 5bcf187 b7fa1b5 5bcf187 c01ffa1 5bcf187 b7fa1b5 5bcf187 b7fa1b5 551bdb6 5bcf187 bd82412 b0cf7f8 5bcf187 0053d2c 5bcf187 b7fa1b5 5bcf187 b7fa1b5 5bcf187 0053d2c 5bcf187 b7fa1b5 5bcf187 b7fa1b5 5bcf187 b7fa1b5 5bcf187 b7fa1b5 5bcf187 621a46f 5669eef 4bd685e 5669eef 5bcf187 5669eef 5bcf187 5669eef 4bd685e 5669eef 5bcf187 621a46f 5bcf187 5b25bd7 5669eef 4bd685e 5669eef 0053d2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
from pyannote.audio import Pipeline
from pydub import AudioSegment
import os
from transformers import WhisperForConditionalGeneration, WhisperProcessor
import torchaudio
import torch
import re
from transformers import pipeline
import spaces
device = 0 if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float32
MODEL_NAME = "openai/whisper-large-v3"
CKPT = "projecte-aina/whisper-large-v3-tiny-caesar"
BATCH_SIZE = 1
model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME, torch_dtype=torch_dtype).to(device)
processor = WhisperProcessor.from_pretrained(MODEL_NAME)
pipeline_vad = Pipeline.from_pretrained("./pyannote/config.yaml")
threshold = 10000
segments_dir = "."
pipe = pipeline(
task="automatic-speech-recognition",
model=CKPT,
chunk_length_s=30,
device=device,
token=os.getenv("HF_TOKEN")
)
def post_process_transcription(transcription, max_repeats=2):
tokens = re.findall(r'\b\w+\'?\w*\b[.,!?]?', transcription)
cleaned_tokens = []
repetition_count = 0
previous_token = None
for token in tokens:
reduced_token = re.sub(r"(\w{1,3})(\1{2,})", "", token)
if reduced_token == previous_token:
repetition_count += 1
if repetition_count <= max_repeats:
cleaned_tokens.append(reduced_token)
else:
repetition_count = 1
cleaned_tokens.append(reduced_token)
previous_token = reduced_token
cleaned_transcription = " ".join(cleaned_tokens)
cleaned_transcription = re.sub(r'\s+', ' ', cleaned_transcription).strip()
return cleaned_transcription
def convert_forced_to_tokens(forced_decoder_ids):
forced_decoder_tokens = []
for i, (idx, token) in enumerate(forced_decoder_ids):
if token is not None:
forced_decoder_tokens.append([idx, processor.tokenizer.decode(token)])
else:
forced_decoder_tokens.append([idx, token])
return forced_decoder_tokens
def generate_1st_chunk(audio):
input_audio, sample_rate = torchaudio.load(audio)
input_audio = torchaudio.transforms.Resample(sample_rate, 16000)(input_audio)
input_speech = input_audio[0]
input_features = processor(input_speech,
sampling_rate=16_000,
return_tensors="pt", torch_dtype=torch_dtype).input_features.to(device)
forced_decoder_ids = []
forced_decoder_ids.append([1,50270]) #[1, '<|ca|>']
forced_decoder_ids.append([2,50262]) #[2, '<|es|>']
forced_decoder_ids.append([3,50360]) #[3, '<|transcribe|>']
forced_decoder_ids_modified = forced_decoder_ids
idx = processor.tokenizer.all_special_tokens.index("<|startofprev|>")
forced_bos_token_id = processor.tokenizer.all_special_ids[idx]
prompt = "Antes de 'digui'm', '112'. 112, digui'm. Hola, puc parlar en castellà? Sí, digui, diga. Sí, mire: a veces al abrir la puerta de mi piso tengo una persona ahí. Vale, avisamos a la Guàrdia Urbana, ¿de acuerdo? Vale, perfecto. Gracias. Gracias. Buen día."
prompt_tokens = processor.tokenizer(prompt, add_special_tokens=False).input_ids
# we need to force these tokens
forced_decoder_ids = []
for idx, token in enumerate(prompt_tokens):
# indexing starts from 1 for forced tokens (token at position 0 is the SOS token)
forced_decoder_ids.append([idx + 1, token])
# now we add the SOS token at the end
offset = len(forced_decoder_ids)
forced_decoder_ids.append([offset + 1, model.generation_config.decoder_start_token_id])
# now we need to append the rest of the prefix tokens (lang, task, timestamps)
offset = len(forced_decoder_ids)
for idx, token in forced_decoder_ids_modified:
forced_decoder_ids.append([idx + offset , token])
model.generation_config.forced_decoder_ids = forced_decoder_ids
pred_ids = model.generate(input_features,
return_timestamps=True,
max_new_tokens=128,
decoder_start_token_id=forced_bos_token_id)
#exclude prompt from output
forced_decoder_tokens = convert_forced_to_tokens(forced_decoder_ids)
output = processor.decode(pred_ids[0][len(forced_decoder_tokens) + 1:], skip_special_tokens=True)
return output[1:]
def generate_2nd_chuk(audio):
input_audio, sample_rate = torchaudio.load(audio)
input_audio = torchaudio.transforms.Resample(sample_rate, 16000)(input_audio)
input_speech = input_audio[0]
input_features = processor(input_speech,
sampling_rate=16_000,
return_tensors="pt", torch_dtype=torch_dtype).input_features.to(device)
forced_decoder_ids = []
forced_decoder_ids.append([1,50270]) #[1, '<|ca|>']
forced_decoder_ids.append([2,50262]) #[2, '<|es|>']
forced_decoder_ids.append([3,50360]) #[3, '<|transcribe|>']
forced_decoder_ids_modified = forced_decoder_ids
idx = processor.tokenizer.all_special_tokens.index("<|startofprev|>")
forced_bos_token_id = processor.tokenizer.all_special_ids[idx]
prompt = "112, digui'm. Hola, puc parlar en castellà? Sí, digui, diga. Sí, mire: a veces al abrir la puerta de mi piso tengo una persona ahí. Vale, avisamos a la Guàrdia Urbana, ¿de acuerdo? Vale, perfecto. Gracias. Gracias. Buen día."
prompt_tokens = processor.tokenizer(prompt, add_special_tokens=False).input_ids
# we need to force these tokens
forced_decoder_ids = []
for idx, token in enumerate(prompt_tokens):
# indexing starts from 1 for forced tokens (token at position 0 is the SOS token)
forced_decoder_ids.append([idx + 1, token])
# now we add the SOS token at the end
offset = len(forced_decoder_ids)
forced_decoder_ids.append([offset + 1, model.generation_config.decoder_start_token_id])
# now we need to append the rest of the prefix tokens (lang, task, timestamps)
offset = len(forced_decoder_ids)
for idx, token in forced_decoder_ids_modified:
forced_decoder_ids.append([idx + offset , token])
model.generation_config.forced_decoder_ids = forced_decoder_ids
pred_ids = model.generate(input_features,
return_timestamps=True,
max_new_tokens=128,
decoder_start_token_id=forced_bos_token_id)
#exclude prompt from output
forced_decoder_tokens = convert_forced_to_tokens(forced_decoder_ids)
output = processor.decode(pred_ids[0][len(forced_decoder_tokens) + 1:], skip_special_tokens=True)
return output[1:]
def processing_vad_threshold(audio, output_vad, threshold, max_duration, concatenated_segment):
transcription_audio = ""
is_first_chunk = True
for speech in output_vad.get_timeline().support():
start, end = speech.start, speech.end
segment_duration = (end - start) * 1000
segment_audio = audio[start * 1000:end * 1000]
if max_duration + segment_duration < threshold:
concatenated_segment += audio[start * 1000:end * 1000]
max_duration += segment_duration
else:
if len(concatenated_segment) > 0:
temp_segment_path = os.path.join(segments_dir, f"temp_segment.wav")
concatenated_segment.export(temp_segment_path, format="wav")
if is_first_chunk:
output = generate_1st_chunk(temp_segment_path)
is_first_chunk = False
else:
output = generate_2nd_chuk(temp_segment_path)
transcription_audio = transcription_audio + output
max_duration = segment_duration
concatenated_segment = segment_audio
# Process any remaining audio in the concatenated_segment
if len(concatenated_segment) > 0:
temp_segment_path = os.path.join(segments_dir, f"temp_segment.wav")
concatenated_segment.export(temp_segment_path, format="wav")
output = generate_2nd_chuk(temp_segment_path)
transcription_audio = transcription_audio + output
return(transcription_audio)
def format_audio(audio_path):
input_audio, sample_rate = torchaudio.load(audio_path)
if input_audio.shape[0] == 2: #stereo2mono
input_audio = torch.mean(input_audio, dim=0, keepdim=True)
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
input_audio = resampler(input_audio)
input_audio = input_audio.squeeze().numpy()
return(input_audio)
def transcribe_pipeline(audio, task):
text = pipe(audio, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
return text
def generate(audio_path, use_v5):
audio = AudioSegment.from_wav(audio_path)
temp_mono_path = None
if audio.channels != 1: #stereo2mono
audio = audio.set_channels(1)
temp_mono_path = "temp_mono.wav"
audio.export(temp_mono_path, format="wav")
audio_path = temp_mono_path
output_vad = pipeline_vad(audio_path)
concatenated_segment = AudioSegment.empty()
max_duration = 0
if use_v5:
output = processing_vad_threshold(audio, output_vad, threshold, max_duration, concatenated_segment)
else:
task = "transcribe"
output = transcribe_pipeline(format_audio(audio_path), task)
clean_output = post_process_transcription(output)
if temp_mono_path and os.path.exists(temp_mono_path):
os.remove(temp_mono_path)
return clean_output |