Spaces:
Running
Running
import torch | |
import gradio as gr | |
import yt_dlp as youtube_dl | |
from transformers import pipeline | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
import tempfile | |
import os | |
MODEL_NAME = "openai/whisper-large-v3" | |
BATCH_SIZE = 8 | |
FILE_LIMIT_MB = 1000 | |
device = 0 if torch.cuda.is_available() else "cpu" | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=MODEL_NAME, | |
chunk_length_s=30, | |
device=device, | |
) | |
def transcribe(inputs, task): | |
if inputs is None: | |
raise gr.Error("Cap fitxer d'脿udio introduit! Si us plau pengeu un fitxer "\ | |
"o enregistreu un 脿udio abans d'enviar la vostra sol路licitud") | |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] | |
return text | |
description_string = "Transcripci贸 autom脿tica de micr貌fon o de fitxers d'脿udio.\n Aquest demostrador s'ha desenvolupat per"\ | |
" comprovar els models de reconeixement de parla per a m贸bils. Per ara utilitza el checkpoint "\ | |
f"[{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) i la llibreria de 馃 Transformers per a la transcripci贸." | |
file_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio"), | |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), | |
], | |
outputs="text", | |
title="Transcripci贸 autom脿tica d'脿udio", | |
description=(description_string), | |
allow_flagging="never", | |
) | |
demo = gr.TabbedInterface([file_transcribe], ["Fitxer"]) | |
if __name__ == "__main__": | |
demo.launch() | |