Spaces:
Running
Running
from pyannote.audio import Pipeline | |
from pydub import AudioSegment | |
import os | |
from transformers import WhisperForConditionalGeneration, WhisperProcessor | |
import torchaudio | |
import torch | |
import re | |
from transformers import pipeline | |
import spaces | |
device = 0 if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float32 | |
MODEL_NAME = "openai/whisper-large-v3" | |
CKPT = "projecte-aina/whisper-large-v3-tiny-caesar" | |
BATCH_SIZE = 1 | |
model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME, torch_dtype=torch_dtype).to(device) | |
processor = WhisperProcessor.from_pretrained(MODEL_NAME) | |
pipeline_vad = Pipeline.from_pretrained("./pyannote/config.yaml") | |
threshold = 10000 | |
segments_dir = "." | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=CKPT, | |
chunk_length_s=30, | |
device=device, | |
token=os.getenv("HF_TOKEN") | |
) | |
def post_process_transcription(transcription, max_repeats=2): | |
tokens = re.findall(r'\b\w+\'?\w*\b[.,!?]?', transcription) | |
cleaned_tokens = [] | |
repetition_count = 0 | |
previous_token = None | |
for token in tokens: | |
reduced_token = re.sub(r"(\w{1,3})(\1{2,})", "", token) | |
if reduced_token == previous_token: | |
repetition_count += 1 | |
if repetition_count <= max_repeats: | |
cleaned_tokens.append(reduced_token) | |
else: | |
repetition_count = 1 | |
cleaned_tokens.append(reduced_token) | |
previous_token = reduced_token | |
cleaned_transcription = " ".join(cleaned_tokens) | |
cleaned_transcription = re.sub(r'\s+', ' ', cleaned_transcription).strip() | |
return cleaned_transcription | |
def convert_forced_to_tokens(forced_decoder_ids): | |
forced_decoder_tokens = [] | |
for i, (idx, token) in enumerate(forced_decoder_ids): | |
if token is not None: | |
forced_decoder_tokens.append([idx, processor.tokenizer.decode(token)]) | |
else: | |
forced_decoder_tokens.append([idx, token]) | |
return forced_decoder_tokens | |
def generate_1st_chunk(audio): | |
input_audio, sample_rate = torchaudio.load(audio) | |
input_audio = torchaudio.transforms.Resample(sample_rate, 16000)(input_audio) | |
input_speech = input_audio[0] | |
input_features = processor(input_speech, | |
sampling_rate=16_000, | |
return_tensors="pt", torch_dtype=torch_dtype).input_features.to(device) | |
forced_decoder_ids = [] | |
forced_decoder_ids.append([1,50270]) #[1, '<|ca|>'] | |
forced_decoder_ids.append([2,50262]) #[2, '<|es|>'] | |
forced_decoder_ids.append([3,50360]) #[3, '<|transcribe|>'] | |
forced_decoder_ids_modified = forced_decoder_ids | |
idx = processor.tokenizer.all_special_tokens.index("<|startofprev|>") | |
forced_bos_token_id = processor.tokenizer.all_special_ids[idx] | |
prompt = "Antes de 'digui'm', '112'. 112, digui'm. Hola, puc parlar en castellà? Sí, digui, diga. Sí, mire: a veces al abrir la puerta de mi piso tengo una persona ahí. Vale, avisamos a la Guàrdia Urbana, ¿de acuerdo? Vale, perfecto. Gracias. Gracias. Buen día." | |
prompt_tokens = processor.tokenizer(prompt, add_special_tokens=False).input_ids | |
# we need to force these tokens | |
forced_decoder_ids = [] | |
for idx, token in enumerate(prompt_tokens): | |
# indexing starts from 1 for forced tokens (token at position 0 is the SOS token) | |
forced_decoder_ids.append([idx + 1, token]) | |
# now we add the SOS token at the end | |
offset = len(forced_decoder_ids) | |
forced_decoder_ids.append([offset + 1, model.generation_config.decoder_start_token_id]) | |
# now we need to append the rest of the prefix tokens (lang, task, timestamps) | |
offset = len(forced_decoder_ids) | |
for idx, token in forced_decoder_ids_modified: | |
forced_decoder_ids.append([idx + offset , token]) | |
model.generation_config.forced_decoder_ids = forced_decoder_ids | |
pred_ids = model.generate(input_features, | |
return_timestamps=True, | |
max_new_tokens=128, | |
decoder_start_token_id=forced_bos_token_id) | |
#exclude prompt from output | |
forced_decoder_tokens = convert_forced_to_tokens(forced_decoder_ids) | |
output = processor.decode(pred_ids[0][len(forced_decoder_tokens) + 1:], skip_special_tokens=True) | |
return output[1:] | |
def generate_2nd_chuk(audio): | |
input_audio, sample_rate = torchaudio.load(audio) | |
input_audio = torchaudio.transforms.Resample(sample_rate, 16000)(input_audio) | |
input_speech = input_audio[0] | |
input_features = processor(input_speech, | |
sampling_rate=16_000, | |
return_tensors="pt", torch_dtype=torch_dtype).input_features.to(device) | |
forced_decoder_ids = [] | |
forced_decoder_ids.append([1,50270]) #[1, '<|ca|>'] | |
forced_decoder_ids.append([2,50262]) #[2, '<|es|>'] | |
forced_decoder_ids.append([3,50360]) #[3, '<|transcribe|>'] | |
forced_decoder_ids_modified = forced_decoder_ids | |
idx = processor.tokenizer.all_special_tokens.index("<|startofprev|>") | |
forced_bos_token_id = processor.tokenizer.all_special_ids[idx] | |
prompt = "112, digui'm. Hola, puc parlar en castellà? Sí, digui, diga. Sí, mire: a veces al abrir la puerta de mi piso tengo una persona ahí. Vale, avisamos a la Guàrdia Urbana, ¿de acuerdo? Vale, perfecto. Gracias. Gracias. Buen día." | |
prompt_tokens = processor.tokenizer(prompt, add_special_tokens=False).input_ids | |
# we need to force these tokens | |
forced_decoder_ids = [] | |
for idx, token in enumerate(prompt_tokens): | |
# indexing starts from 1 for forced tokens (token at position 0 is the SOS token) | |
forced_decoder_ids.append([idx + 1, token]) | |
# now we add the SOS token at the end | |
offset = len(forced_decoder_ids) | |
forced_decoder_ids.append([offset + 1, model.generation_config.decoder_start_token_id]) | |
# now we need to append the rest of the prefix tokens (lang, task, timestamps) | |
offset = len(forced_decoder_ids) | |
for idx, token in forced_decoder_ids_modified: | |
forced_decoder_ids.append([idx + offset , token]) | |
model.generation_config.forced_decoder_ids = forced_decoder_ids | |
pred_ids = model.generate(input_features, | |
return_timestamps=True, | |
max_new_tokens=128, | |
decoder_start_token_id=forced_bos_token_id) | |
#exclude prompt from output | |
forced_decoder_tokens = convert_forced_to_tokens(forced_decoder_ids) | |
output = processor.decode(pred_ids[0][len(forced_decoder_tokens) + 1:], skip_special_tokens=True) | |
return output[1:] | |
def processing_vad_threshold(audio, output_vad, threshold, max_duration, concatenated_segment): | |
transcription_audio = "" | |
is_first_chunk = True | |
for speech in output_vad.get_timeline().support(): | |
start, end = speech.start, speech.end | |
segment_duration = (end - start) * 1000 | |
segment_audio = audio[start * 1000:end * 1000] | |
if max_duration + segment_duration < threshold: | |
concatenated_segment += audio[start * 1000:end * 1000] | |
max_duration += segment_duration | |
else: | |
if len(concatenated_segment) > 0: | |
temp_segment_path = os.path.join(segments_dir, f"temp_segment.wav") | |
concatenated_segment.export(temp_segment_path, format="wav") | |
if is_first_chunk: | |
output = generate_1st_chunk(temp_segment_path) | |
is_first_chunk = False | |
else: | |
output = generate_2nd_chuk(temp_segment_path) | |
transcription_audio = transcription_audio + output | |
max_duration = segment_duration | |
concatenated_segment = segment_audio | |
# Process any remaining audio in the concatenated_segment | |
if len(concatenated_segment) > 0: | |
temp_segment_path = os.path.join(segments_dir, f"temp_segment.wav") | |
concatenated_segment.export(temp_segment_path, format="wav") | |
output = generate_2nd_chuk(temp_segment_path) | |
transcription_audio = transcription_audio + output | |
return(transcription_audio) | |
def format_audio(audio_path): | |
input_audio, sample_rate = torchaudio.load(audio_path) | |
resampler = torchaudio.transforms.Resample(sample_rate, 16000) | |
input_audio = resampler(input_audio) | |
input_audio = input_audio.squeeze().numpy() | |
return(input_audio) | |
def transcribe_pipeline(audio, task): | |
text = pipe(audio, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] | |
return text | |
def generate(audio_path, use_v5): | |
audio = AudioSegment.from_wav(audio_path) | |
output_vad = pipeline_vad(audio_path) | |
concatenated_segment = AudioSegment.empty() | |
max_duration = 0 | |
if use_v5: | |
output = processing_vad_threshold(audio, output_vad, threshold, max_duration, concatenated_segment) | |
else: | |
task = "transcribe" | |
output = transcribe_pipeline(format_audio(audio_path), task) | |
clean_output = post_process_transcription(output) | |
return clean_output |