from transformers import WhisperForConditionalGeneration, WhisperProcessor import torchaudio import torch import librosa import ffmpeg MODEL_NAME = "openai/whisper-large-v3" device = "cuda:0" if torch.cuda.is_available() else "cpu" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("[ INFO ] Device: ", device) #torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 torch_dtype = torch.float32 model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME, torch_dtype=torch_dtype).to(device) processor = WhisperProcessor.from_pretrained(MODEL_NAME) def convert_forced_to_tokens(forced_decoder_ids): forced_decoder_tokens = [] for i, (idx, token) in enumerate(forced_decoder_ids): if token is not None: forced_decoder_tokens.append([idx, processor.tokenizer.decode(token)]) else: forced_decoder_tokens.append([idx, token]) return forced_decoder_tokens def change_formate(input_file): ffmpeg.input(input_file).output("output.wav", **{'ar': '16000'}).run(overwrite_output=True) #loglevel='quiet' return "output.wav" def generate(audio): # audio = change_formate(audio) input_audio, sample_rate = torchaudio.load(audio) input_audio = torchaudio.transforms.Resample(sample_rate, 16000)(input_audio) #metadata = torchaudio.info(audio) #length1 = math.ceil(metadata.num_frames / metadata.sample_rate) length = librosa.get_duration(path=audio) input_speech = input_audio[0] if length <= 30: input_features = processor(input_speech, sampling_rate=16_000, return_tensors="pt", torch_dtype=torch_dtype).input_features.to(device) else: input_features = processor(input_speech, return_tensors="pt", truncation=False, padding="longest", return_attention_mask=True, sampling_rate=16_000).input_features.to(device) forced_decoder_ids = [] forced_decoder_ids.append([1,50270]) #[1, '<|ca|>'] forced_decoder_ids.append([2,50262]) #[2, '<|es|>'] forced_decoder_ids.append([3,50360]) #[3, '<|transcribe|>'] forced_decoder_ids_modified = forced_decoder_ids idx = processor.tokenizer.all_special_tokens.index("<|startofprev|>") forced_bos_token_id = processor.tokenizer.all_special_ids[idx] prompt = " transcribe an audio containing code-switching between es and ca" prompt_tokens = processor.tokenizer(prompt, add_special_tokens=False).input_ids # we need to force these tokens forced_decoder_ids = [] for idx, token in enumerate(prompt_tokens): # indexing starts from 1 for forced tokens (token at position 0 is the SOS token) forced_decoder_ids.append([idx + 1, token]) # now we add the SOS token at the end offset = len(forced_decoder_ids) forced_decoder_ids.append([offset + 1, model.generation_config.decoder_start_token_id]) # now we need to append the rest of the prefix tokens (lang, task, timestamps) offset = len(forced_decoder_ids) for idx, token in forced_decoder_ids_modified: forced_decoder_ids.append([idx + offset , token]) model.config.forced_decoder_ids = forced_decoder_ids model.generation_config.forced_decoder_ids = forced_decoder_ids if length <= 30: pred_ids = model.generate(input_features, return_timestamps=True, decoder_start_token_id=forced_bos_token_id, max_new_tokens=128) #exclude prompt from output forced_decoder_tokens = convert_forced_to_tokens(forced_decoder_ids) output = processor.decode(pred_ids[0][len(forced_decoder_tokens) + 1:], skip_special_tokens=True) else: pred_ids = model.generate(input_features, return_timestamps=True, decoder_start_token_id=forced_bos_token_id, logprob_threshold=-1.0, compression_ratio_threshold=1.35, temperature=(0.0, 0.2, 0.4), no_speech_threshold=0.1, ) output = processor.batch_decode(pred_ids, skip_special_tokens=True) if length <= 30: return output[1:] else: return output[0]