from pyannote.audio import Pipeline from pydub import AudioSegment import os from transformers import WhisperForConditionalGeneration, WhisperProcessor import torchaudio import torch device = 0 if torch.cuda.is_available() else "cpu" torch_dtype = torch.float32 MODEL_NAME = "openai/whisper-large-v3" model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME, torch_dtype=torch_dtype).to(device) processor = WhisperProcessor.from_pretrained(MODEL_NAME) pipeline_vad = Pipeline.from_pretrained("pyannote/voice-activity-detection", use_auth_token=os.environ.get("HF_TOKEN")) threshold = 15000 # adjust max duration threshold segments_dir = "." def clean_text(input_text): remove_chars = ['.', ',', ';', ':', '¿', '?', '«', '»', '-', '¡', '!', '@', '*', '{', '}', '[', ']', '=', '/', '\\', '&', '#', '…'] output_text = ''.join(char if char not in remove_chars else ' ' for char in input_text) #removing special chars return (' '.join(output_text.split()).lower()) #remove extra spaces and return cleaned text def convert_forced_to_tokens(forced_decoder_ids): forced_decoder_tokens = [] for i, (idx, token) in enumerate(forced_decoder_ids): if token is not None: forced_decoder_tokens.append([idx, processor.tokenizer.decode(token)]) else: forced_decoder_tokens.append([idx, token]) return forced_decoder_tokens def generate_1st_chunk(audio): input_audio, sample_rate = torchaudio.load(audio) input_audio = torchaudio.transforms.Resample(sample_rate, 16000)(input_audio) input_speech = input_audio[0] input_features = processor(input_speech, sampling_rate=16_000, return_tensors="pt", torch_dtype=torch_dtype).input_features.to(device) forced_decoder_ids = [] forced_decoder_ids.append([1,50270]) #[1, '<|ca|>'] forced_decoder_ids.append([2,50262]) #[2, '<|es|>'] forced_decoder_ids.append([3,50360]) #[3, '<|transcribe|>'] forced_decoder_ids_modified = forced_decoder_ids # we need to force these tokens forced_decoder_ids = [] # now we need to append the prefix tokens (lang, task, timestamps) offset = len(forced_decoder_ids) for idx, token in forced_decoder_ids_modified: forced_decoder_ids.append([idx + offset , token]) model.generation_config.forced_decoder_ids = forced_decoder_ids pred_ids = model.generate(input_features, return_timestamps=True, max_new_tokens=128) #exclude prompt from output forced_decoder_tokens = convert_forced_to_tokens(forced_decoder_ids) output = processor.decode(pred_ids[0][len(forced_decoder_tokens) + 1:], skip_special_tokens=True) output_tokens = processor.batch_decode(pred_ids, skip_special_tokens=False) return output[1:] def generate_from_2nd_chunk(audio, prev_prompt): input_audio, sample_rate = torchaudio.load(audio) input_audio = torchaudio.transforms.Resample(sample_rate, 16000)(input_audio) input_speech = input_audio[0] input_features = processor(input_speech, sampling_rate=16_000, return_tensors="pt", torch_dtype=torch_dtype).input_features.to(device) forced_decoder_ids = [] forced_decoder_ids.append([1,50270]) #[1, '<|ca|>'] forced_decoder_ids.append([2,50262]) #[2, '<|es|>'] forced_decoder_ids.append([3,50360]) #[3, '<|transcribe|>'] forced_decoder_ids_modified = forced_decoder_ids idx = processor.tokenizer.all_special_tokens.index("<|startofprev|>") forced_bos_token_id = processor.tokenizer.all_special_ids[idx] prompt_tokens = processor.tokenizer(prev_prompt, add_special_tokens=False).input_ids # we need to force these tokens forced_decoder_ids = [] for idx, token in enumerate(prompt_tokens): # indexing starts from 1 for forced tokens (token at position 0 is the SOS token) forced_decoder_ids.append([idx + 1, token]) # now we add the SOS token at the end offset = len(forced_decoder_ids) forced_decoder_ids.append([offset + 1, model.generation_config.decoder_start_token_id]) # now we need to append the rest of the prefix tokens (lang, task, timestamps) offset = len(forced_decoder_ids) for idx, token in forced_decoder_ids_modified: forced_decoder_ids.append([idx + offset , token]) model.generation_config.forced_decoder_ids = forced_decoder_ids pred_ids = model.generate(input_features, return_timestamps=True, max_new_tokens=128, decoder_start_token_id=forced_bos_token_id) #exclude prompt from output forced_decoder_tokens = convert_forced_to_tokens(forced_decoder_ids) output = processor.decode(pred_ids[0][len(forced_decoder_tokens) + 1:], skip_special_tokens=True) output_tokens = processor.batch_decode(pred_ids, skip_special_tokens=False) return output[1:] def processing_vad_v3(audio, output_vad, prev_prompt): transcription_audio = "" first_chunk = True for speech in output_vad.get_timeline().support(): start, end = speech.start, speech.end segment_audio = audio[start * 1000:end * 1000] segment_audio.export(os.path.join(segments_dir, f"temp_segment.wav"), format="wav") filename = os.path.join(segments_dir, f"temp_segment.wav") if first_chunk: output = generate_1st_chunk(filename) first_chunk = False else: output = generate_from_2nd_chunk(filename, prev_prompt) prev_prompt = output transcription_audio = transcription_audio + " " + output return transcription_audio def processing_vad_v4(audio, output_vad, threshold, max_duration, prev_prompt, concatenated_segment): transcription_audio = "" is_first_chunk = True for speech in output_vad.get_timeline().support(): start, end = speech.start, speech.end segment_duration = (end - start) * 1000 segment_audio = audio[start * 1000:end * 1000] if max_duration + segment_duration < threshold: concatenated_segment += audio[start * 1000:end * 1000] max_duration += segment_duration else: if len(concatenated_segment) > 0: temp_segment_path = os.path.join(segments_dir, f"temp_segment.wav") concatenated_segment.export(temp_segment_path, format="wav") if is_first_chunk: output = generate_1st_chunk(temp_segment_path) is_first_chunk = False else: output = generate_from_2nd_chunk(temp_segment_path, prev_prompt) prev_prompt = output transcription_audio = transcription_audio + output max_duration = segment_duration concatenated_segment = segment_audio # Process any remaining audio in the concatenated_segment if len(concatenated_segment) > 0: temp_segment_path = os.path.join(segments_dir, f"temp_segment.wav") concatenated_segment.export(temp_segment_path, format="wav") output = generate_from_2nd_chunk(temp_segment_path, prev_prompt) prev_prompt = output transcription_audio = transcription_audio + output return transcription_audio def generate(audio_path, use_v4): #check audio lenght audio = AudioSegment.from_wav(audio_path) duration_seconds = len(audio) / 1000.0 #apply VAD only if the duration is >30s if duration_seconds >= 30: output_vad = pipeline_vad(audio_path) concatenated_segment = AudioSegment.empty() max_duration = 0 prev_prompt = "" if use_v4: return processing_vad_v4(audio, output_vad, threshold, max_duration, prev_prompt, concatenated_segment) else: return processing_vad_v3(audio, output_vad, prev_prompt) else: #if duraion is <30s, process directly with generate return generate_1st_chunk(audio_path)