from pyannote.audio import Pipeline from pydub import AudioSegment import os from transformers import WhisperForConditionalGeneration, WhisperProcessor import torchaudio import torch import re from transformers import pipeline import spaces device = 0 if torch.cuda.is_available() else "cpu" torch_dtype = torch.float32 MODEL_NAME = "openai/whisper-large-v3" CKPT = "projecte-aina/whisper-large-v3-tiny-caesar" BATCH_SIZE = 1 model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME, torch_dtype=torch_dtype).to(device) processor = WhisperProcessor.from_pretrained(MODEL_NAME) pipeline_vad = Pipeline.from_pretrained("./pyannote/config.yaml") threshold = 10000 segments_dir = "." pipe = pipeline( task="automatic-speech-recognition", model=CKPT, chunk_length_s=30, device=device, token=os.getenv("HF_TOKEN") ) def post_process_transcription(transcription, max_repeats=2): tokens = re.findall(r'\b\w+\'?\w*\b[.,!?]?', transcription) cleaned_tokens = [] repetition_count = 0 previous_token = None for token in tokens: reduced_token = re.sub(r"(\w{1,3})(\1{2,})", "", token) if reduced_token == previous_token: repetition_count += 1 if repetition_count <= max_repeats: cleaned_tokens.append(reduced_token) else: repetition_count = 1 cleaned_tokens.append(reduced_token) previous_token = reduced_token cleaned_transcription = " ".join(cleaned_tokens) cleaned_transcription = re.sub(r'\s+', ' ', cleaned_transcription).strip() return cleaned_transcription def convert_forced_to_tokens(forced_decoder_ids): forced_decoder_tokens = [] for i, (idx, token) in enumerate(forced_decoder_ids): if token is not None: forced_decoder_tokens.append([idx, processor.tokenizer.decode(token)]) else: forced_decoder_tokens.append([idx, token]) return forced_decoder_tokens def generate_1st_chunk(audio): input_audio, sample_rate = torchaudio.load(audio) input_audio = torchaudio.transforms.Resample(sample_rate, 16000)(input_audio) input_speech = input_audio[0] input_features = processor(input_speech, sampling_rate=16_000, return_tensors="pt", torch_dtype=torch_dtype).input_features.to(device) forced_decoder_ids = [] forced_decoder_ids.append([1,50270]) #[1, '<|ca|>'] forced_decoder_ids.append([2,50262]) #[2, '<|es|>'] forced_decoder_ids.append([3,50360]) #[3, '<|transcribe|>'] forced_decoder_ids_modified = forced_decoder_ids idx = processor.tokenizer.all_special_tokens.index("<|startofprev|>") forced_bos_token_id = processor.tokenizer.all_special_ids[idx] prompt = "Antes de 'digui'm', '112'. 112, digui'm. Hola, puc parlar en castellà? Sí, digui, diga. Sí, mire: a veces al abrir la puerta de mi piso tengo una persona ahí. Vale, avisamos a la Guàrdia Urbana, ¿de acuerdo? Vale, perfecto. Gracias. Gracias. Buen día." prompt_tokens = processor.tokenizer(prompt, add_special_tokens=False).input_ids # we need to force these tokens forced_decoder_ids = [] for idx, token in enumerate(prompt_tokens): # indexing starts from 1 for forced tokens (token at position 0 is the SOS token) forced_decoder_ids.append([idx + 1, token]) # now we add the SOS token at the end offset = len(forced_decoder_ids) forced_decoder_ids.append([offset + 1, model.generation_config.decoder_start_token_id]) # now we need to append the rest of the prefix tokens (lang, task, timestamps) offset = len(forced_decoder_ids) for idx, token in forced_decoder_ids_modified: forced_decoder_ids.append([idx + offset , token]) model.generation_config.forced_decoder_ids = forced_decoder_ids pred_ids = model.generate(input_features, return_timestamps=True, max_new_tokens=128, decoder_start_token_id=forced_bos_token_id) #exclude prompt from output forced_decoder_tokens = convert_forced_to_tokens(forced_decoder_ids) output = processor.decode(pred_ids[0][len(forced_decoder_tokens) + 1:], skip_special_tokens=True) return output[1:] def generate_2nd_chuk(audio): input_audio, sample_rate = torchaudio.load(audio) input_audio = torchaudio.transforms.Resample(sample_rate, 16000)(input_audio) input_speech = input_audio[0] input_features = processor(input_speech, sampling_rate=16_000, return_tensors="pt", torch_dtype=torch_dtype).input_features.to(device) forced_decoder_ids = [] forced_decoder_ids.append([1,50270]) #[1, '<|ca|>'] forced_decoder_ids.append([2,50262]) #[2, '<|es|>'] forced_decoder_ids.append([3,50360]) #[3, '<|transcribe|>'] forced_decoder_ids_modified = forced_decoder_ids idx = processor.tokenizer.all_special_tokens.index("<|startofprev|>") forced_bos_token_id = processor.tokenizer.all_special_ids[idx] prompt = "112, digui'm. Hola, puc parlar en castellà? Sí, digui, diga. Sí, mire: a veces al abrir la puerta de mi piso tengo una persona ahí. Vale, avisamos a la Guàrdia Urbana, ¿de acuerdo? Vale, perfecto. Gracias. Gracias. Buen día." prompt_tokens = processor.tokenizer(prompt, add_special_tokens=False).input_ids # we need to force these tokens forced_decoder_ids = [] for idx, token in enumerate(prompt_tokens): # indexing starts from 1 for forced tokens (token at position 0 is the SOS token) forced_decoder_ids.append([idx + 1, token]) # now we add the SOS token at the end offset = len(forced_decoder_ids) forced_decoder_ids.append([offset + 1, model.generation_config.decoder_start_token_id]) # now we need to append the rest of the prefix tokens (lang, task, timestamps) offset = len(forced_decoder_ids) for idx, token in forced_decoder_ids_modified: forced_decoder_ids.append([idx + offset , token]) model.generation_config.forced_decoder_ids = forced_decoder_ids pred_ids = model.generate(input_features, return_timestamps=True, max_new_tokens=128, decoder_start_token_id=forced_bos_token_id) #exclude prompt from output forced_decoder_tokens = convert_forced_to_tokens(forced_decoder_ids) output = processor.decode(pred_ids[0][len(forced_decoder_tokens) + 1:], skip_special_tokens=True) return output[1:] def processing_vad_threshold(audio, output_vad, threshold, max_duration, concatenated_segment): transcription_audio = "" is_first_chunk = True for speech in output_vad.get_timeline().support(): start, end = speech.start, speech.end segment_duration = (end - start) * 1000 segment_audio = audio[start * 1000:end * 1000] if max_duration + segment_duration < threshold: concatenated_segment += audio[start * 1000:end * 1000] max_duration += segment_duration else: if len(concatenated_segment) > 0: temp_segment_path = os.path.join(segments_dir, f"temp_segment.wav") concatenated_segment.export(temp_segment_path, format="wav") if is_first_chunk: output = generate_1st_chunk(temp_segment_path) is_first_chunk = False else: output = generate_2nd_chuk(temp_segment_path) transcription_audio = transcription_audio + output max_duration = segment_duration concatenated_segment = segment_audio # Process any remaining audio in the concatenated_segment if len(concatenated_segment) > 0: temp_segment_path = os.path.join(segments_dir, f"temp_segment.wav") concatenated_segment.export(temp_segment_path, format="wav") output = generate_2nd_chuk(temp_segment_path) transcription_audio = transcription_audio + output return(transcription_audio) def format_audio(audio_path): input_audio, sample_rate = torchaudio.load(audio_path) resampler = torchaudio.transforms.Resample(sample_rate, 16000) input_audio = resampler(input_audio) input_audio = input_audio.squeeze().numpy() return(input_audio) def transcribe_pipeline(audio, task): text = pipe(audio, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] return text def generate(audio_path, use_v5): audio = AudioSegment.from_wav(audio_path) output_vad = pipeline_vad(audio_path) concatenated_segment = AudioSegment.empty() max_duration = 0 if use_v5: output = processing_vad_threshold(audio, output_vad, threshold, max_duration, concatenated_segment) else: task = "transcribe" output = transcribe_pipeline(format_audio(audio_path), task) clean_output = post_process_transcription(output) return clean_output