Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,566 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
# Install mediapipe
|
4 |
+
#!pip install mediapipe
|
5 |
+
|
6 |
+
# *******Import necessary libraries***************
|
7 |
+
import math
|
8 |
+
import cv2
|
9 |
+
import numpy as np
|
10 |
+
from time import time
|
11 |
+
import mediapipe as mp
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
from PIL import Image
|
14 |
+
#*******************Initialize the Pose Detection Model*****************
|
15 |
+
|
16 |
+
# Initializing mediapipe pose class.
|
17 |
+
mp_pose = mp.solutions.pose
|
18 |
+
|
19 |
+
# Setting up the Pose function.
|
20 |
+
pose = mp_pose.Pose(static_image_mode=True, min_detection_confidence=0.3, model_complexity=2)
|
21 |
+
|
22 |
+
# Initializing mediapipe drawing class, useful for annotation.
|
23 |
+
mp_drawing = mp.solutions.drawing_utils
|
24 |
+
|
25 |
+
#*********Read an Image************************
|
26 |
+
|
27 |
+
# !pip install requests
|
28 |
+
# import requests
|
29 |
+
# # Function to read an image from a URL
|
30 |
+
#def read_image_from_url(url1):
|
31 |
+
# response = requests.get(url1)
|
32 |
+
# image_array = np.asarray(bytearray(response.content), dtype=np.uint8)
|
33 |
+
# image = cv2.imdecode(image_array, cv2.IMREAD_COLOR)
|
34 |
+
# return image
|
35 |
+
|
36 |
+
# # GitHub URL of the image
|
37 |
+
# url1 = 'https://github.com/toanmolsharma/newprojecty/raw/main/media/sample.jpg'
|
38 |
+
|
39 |
+
# # Read the image from the URL
|
40 |
+
# sample_img = read_image_from_url(url1)
|
41 |
+
|
42 |
+
# # Read an image from the specified path.
|
43 |
+
# #sample_img = cv2.imread('media/sample.jpg')
|
44 |
+
|
45 |
+
# # Specify a size of the figure.
|
46 |
+
# plt.figure(figsize = [10, 10])
|
47 |
+
|
48 |
+
# # Display the sample image, also convert BGR to RGB for display.
|
49 |
+
#plt.title("Sample Image");plt.axis('off');plt.imshow(sample_img[:,:,::-1]);plt.show()
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
#*********************Pose Detection On Real-Time Webcam Feed/Video******
|
54 |
+
|
55 |
+
## Setup Pose function for video.
|
56 |
+
#pose_video = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.5, model_complexity=1)
|
57 |
+
|
58 |
+
## Initialize the VideoCapture object to read from the webcam.
|
59 |
+
#video = cv2.VideoCapture(1)
|
60 |
+
|
61 |
+
## Create named window for resizing purposes
|
62 |
+
#cv2.namedWindow('Pose Detection', cv2.WINDOW_NORMAL)
|
63 |
+
|
64 |
+
|
65 |
+
## Initialize the VideoCapture object to read from a video stored in the disk.
|
66 |
+
##video = cv2.VideoCapture('media/running.mp4')
|
67 |
+
|
68 |
+
## Set video camera size
|
69 |
+
#video.set(3,1280)
|
70 |
+
#video.set(4,960)
|
71 |
+
|
72 |
+
## Initialize a variable to store the time of the previous frame.
|
73 |
+
#time1 = 0
|
74 |
+
|
75 |
+
## Iterate until the video is accessed successfully.
|
76 |
+
#while video.isOpened():
|
77 |
+
|
78 |
+
# # Read a frame.
|
79 |
+
# ok, frame = video.read()
|
80 |
+
|
81 |
+
# # Check if frame is not read properly.
|
82 |
+
# if not ok:
|
83 |
+
|
84 |
+
# # Break the loop.
|
85 |
+
# break
|
86 |
+
|
87 |
+
# # Flip the frame horizontally for natural (selfie-view) visualization.
|
88 |
+
# frame = cv2.flip(frame, 1)
|
89 |
+
|
90 |
+
# # Get the width and height of the frame
|
91 |
+
# frame_height, frame_width, _ = frame.shape
|
92 |
+
|
93 |
+
# # Resize the frame while keeping the aspect ratio.
|
94 |
+
# frame = cv2.resize(frame, (int(frame_width * (640 / frame_height)), 640))
|
95 |
+
|
96 |
+
# # Perform Pose landmark detection.
|
97 |
+
#frame, _ = detectPose(frame, pose_video, display=False)
|
98 |
+
|
99 |
+
## Set the time for this frame to the current time.
|
100 |
+
##time2 = time()
|
101 |
+
|
102 |
+
# #Check if the difference between the previous and this frame time > 0 to avoid division by zero.
|
103 |
+
#if (time2 - time1) > 0:
|
104 |
+
|
105 |
+
# # Calculate the number of frames per second.
|
106 |
+
# frames_per_second = 1.0 / (time2 - time1)
|
107 |
+
|
108 |
+
# # Write the calculated number of frames per second on the frame.
|
109 |
+
#cv2.putText(frame, 'FPS: {}'.format(int(frames_per_second)), (10, 30),cv2.FONT_HERSHEY_PLAIN, 2, (0, 255, 0), 3)
|
110 |
+
|
111 |
+
## Update the previous frame time to this frame time.
|
112 |
+
## As this frame will become previous frame in next iteration.
|
113 |
+
#time1 = time2
|
114 |
+
|
115 |
+
## Display the frame.
|
116 |
+
#cv2.imshow('Pose Detection', frame)
|
117 |
+
|
118 |
+
# # Wait until a key is pressed.
|
119 |
+
# # Retreive the ASCII code of the key pressed
|
120 |
+
# k = cv2.waitKey(1) & 0xFF
|
121 |
+
|
122 |
+
# # Check if 'ESC' is pressed.
|
123 |
+
#if(k == 27):
|
124 |
+
|
125 |
+
# # Break the loop.
|
126 |
+
# break
|
127 |
+
|
128 |
+
## Release the VideoCapture object.
|
129 |
+
#video.release()
|
130 |
+
|
131 |
+
## Close the windows.
|
132 |
+
#cv2.destroyAllWindows()
|
133 |
+
|
134 |
+
|
135 |
+
#************************Create a Pose Detection Function*******************
|
136 |
+
def detectPose(image, pose, display=True):
|
137 |
+
'''
|
138 |
+
This function performs pose detection on an image.
|
139 |
+
Args:
|
140 |
+
image: The input image with a prominent person whose pose landmarks needs to be detected.
|
141 |
+
pose: The pose setup function required to perform the pose detection.
|
142 |
+
display: A boolean value that is if set to true the function displays the original input image, the resultant image,
|
143 |
+
and the pose landmarks in 3D plot and returns nothing.
|
144 |
+
Returns:
|
145 |
+
output_image: The input image with the detected pose landmarks drawn.
|
146 |
+
landmarks: A list of detected landmarks converted into their original scale.
|
147 |
+
'''
|
148 |
+
|
149 |
+
# Create a copy of the input image.
|
150 |
+
output_image = image.copy()
|
151 |
+
|
152 |
+
# Convert the image from BGR into RGB format.
|
153 |
+
imageRGB = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
154 |
+
|
155 |
+
# Perform the Pose Detection.
|
156 |
+
results = pose.process(imageRGB)
|
157 |
+
|
158 |
+
# Retrieve the height and width of the input image.
|
159 |
+
height, width, _ = image.shape
|
160 |
+
|
161 |
+
# Initialize a list to store the detected landmarks.
|
162 |
+
landmarks = []
|
163 |
+
|
164 |
+
# Check if any landmarks are detected.
|
165 |
+
if results.pose_landmarks:
|
166 |
+
|
167 |
+
# Draw Pose landmarks on the output image.
|
168 |
+
mp_drawing.draw_landmarks(image=output_image, landmark_list=results.pose_landmarks,
|
169 |
+
connections=mp_pose.POSE_CONNECTIONS)
|
170 |
+
|
171 |
+
# Iterate over the detected landmarks.
|
172 |
+
for landmark in results.pose_landmarks.landmark:
|
173 |
+
|
174 |
+
# Append the landmark into the list.
|
175 |
+
landmarks.append((int(landmark.x * width), int(landmark.y * height),
|
176 |
+
(landmark.z * width)))
|
177 |
+
|
178 |
+
# Check if the original input image and the resultant image are specified to be displayed.
|
179 |
+
if display:
|
180 |
+
|
181 |
+
# Display the original input image and the resultant image.
|
182 |
+
plt.figure(figsize=[22,22])
|
183 |
+
plt.subplot(121);plt.imshow(image[:,:,::-1]);plt.title("Original Image");plt.axis('off');
|
184 |
+
plt.subplot(122);plt.imshow(output_image[:,:,::-1]);plt.title("Output Image");plt.axis('off');
|
185 |
+
|
186 |
+
# Also Plot the Pose landmarks in 3D.
|
187 |
+
mp_drawing.plot_landmarks(results.pose_world_landmarks, mp_pose.POSE_CONNECTIONS)
|
188 |
+
|
189 |
+
# Otherwise
|
190 |
+
else:
|
191 |
+
|
192 |
+
# Return the output image and the found landmarks.
|
193 |
+
return output_image, landmarks
|
194 |
+
|
195 |
+
|
196 |
+
|
197 |
+
# ********************Pose Classification with Angle Heuristics*****************
|
198 |
+
|
199 |
+
def calculateAngle(landmark1, landmark2, landmark3):
|
200 |
+
'''
|
201 |
+
This function calculates angle between three different landmarks.
|
202 |
+
Args:
|
203 |
+
landmark1: The first landmark containing the x,y and z coordinates.
|
204 |
+
landmark2: The second landmark containing the x,y and z coordinates.
|
205 |
+
landmark3: The third landmark containing the x,y and z coordinates.
|
206 |
+
Returns:
|
207 |
+
angle: The calculated angle between the three landmarks.
|
208 |
+
'''
|
209 |
+
|
210 |
+
# Get the required landmarks coordinates.
|
211 |
+
x1, y1, _ = landmark1
|
212 |
+
x2, y2, _ = landmark2
|
213 |
+
x3, y3, _ = landmark3
|
214 |
+
|
215 |
+
# Calculate the angle between the three points
|
216 |
+
angle = math.degrees(math.atan2(y3 - y2, x3 - x2) - math.atan2(y1 - y2, x1 - x2))
|
217 |
+
|
218 |
+
# Check if the angle is less than zero.
|
219 |
+
if angle < 0:
|
220 |
+
|
221 |
+
# Add 360 to the found angle.
|
222 |
+
angle += 360
|
223 |
+
|
224 |
+
# Return the calculated angle.
|
225 |
+
return angle
|
226 |
+
|
227 |
+
|
228 |
+
|
229 |
+
#***************************Create a Function to Perform Pose Classification***************
|
230 |
+
|
231 |
+
def classifyPose(landmarks, output_image, display=False):
|
232 |
+
|
233 |
+
# Initialize the label of the pose. It is not known at this stage.
|
234 |
+
label = "Unknown Pose"
|
235 |
+
|
236 |
+
# Specify the color (Red) with which the label will be written on the image.
|
237 |
+
color = (0, 0, 255)
|
238 |
+
|
239 |
+
# Calculate the required angles.
|
240 |
+
#----------------------------------------------------------------------------------------------------------------
|
241 |
+
|
242 |
+
# Get the angle between the left shoulder, elbow and wrist points.
|
243 |
+
left_elbow_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value],
|
244 |
+
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value],
|
245 |
+
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value])
|
246 |
+
|
247 |
+
# Get the angle between the right shoulder, elbow and wrist points.
|
248 |
+
right_elbow_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value],
|
249 |
+
landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value],
|
250 |
+
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value])
|
251 |
+
|
252 |
+
# Get the angle between the left elbow, shoulder and hip points.
|
253 |
+
left_shoulder_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value],
|
254 |
+
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value],
|
255 |
+
landmarks[mp_pose.PoseLandmark.LEFT_HIP.value])
|
256 |
+
|
257 |
+
# Get the angle between the right hip, shoulder and elbow points.
|
258 |
+
right_shoulder_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value],
|
259 |
+
landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value],
|
260 |
+
landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value])
|
261 |
+
|
262 |
+
# Get the angle between the left hip, knee and ankle points.
|
263 |
+
left_knee_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_HIP.value],
|
264 |
+
landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value],
|
265 |
+
landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value])
|
266 |
+
|
267 |
+
# Get the angle between the right hip, knee and ankle points
|
268 |
+
right_knee_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value],
|
269 |
+
landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value],
|
270 |
+
landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value])
|
271 |
+
|
272 |
+
#----------------------------------------------------------------------------------------------------------------
|
273 |
+
# Check for Five-Pointed Star Pose
|
274 |
+
if abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][1] - landmarks[mp_pose.PoseLandmark.LEFT_HIP.value][1]) < 100 and \
|
275 |
+
abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][1] - landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value][1]) < 100 and \
|
276 |
+
abs(landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value][0] - landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value][0]) > 200 and \
|
277 |
+
abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][0] - landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][0]) > 200:
|
278 |
+
label = "Five-Pointed Star Pose"
|
279 |
+
|
280 |
+
# Check if it is the warrior II pose or the T pose.
|
281 |
+
# As for both of them, both arms should be straight and shoulders should be at the specific angle.
|
282 |
+
#----------------------------------------------------------------------------------------------------------------
|
283 |
+
|
284 |
+
# Check if the both arms are straight.
|
285 |
+
if left_elbow_angle > 165 and left_elbow_angle < 195 and right_elbow_angle > 165 and right_elbow_angle < 195:
|
286 |
+
|
287 |
+
# Check if shoulders are at the required angle.
|
288 |
+
if left_shoulder_angle > 80 and left_shoulder_angle < 110 and right_shoulder_angle > 80 and right_shoulder_angle < 110:
|
289 |
+
|
290 |
+
# Check if it is the warrior II pose.
|
291 |
+
#----------------------------------------------------------------------------------------------------------------
|
292 |
+
|
293 |
+
# Check if one leg is straight.
|
294 |
+
if left_knee_angle > 165 and left_knee_angle < 195 or right_knee_angle > 165 and right_knee_angle < 195:
|
295 |
+
|
296 |
+
# Check if the other leg is bended at the required angle.
|
297 |
+
if left_knee_angle > 90 and left_knee_angle < 120 or right_knee_angle > 90 and right_knee_angle < 120:
|
298 |
+
|
299 |
+
# Specify the label of the pose that is Warrior II pose.
|
300 |
+
label = 'Warrior II Pose'
|
301 |
+
|
302 |
+
#----------------------------------------------------------------------------------------------------------------
|
303 |
+
|
304 |
+
# Check if it is the T pose.
|
305 |
+
#----------------------------------------------------------------------------------------------------------------
|
306 |
+
|
307 |
+
# Check if both legs are straight
|
308 |
+
if left_knee_angle > 160 and left_knee_angle < 195 and right_knee_angle > 160 and right_knee_angle < 195:
|
309 |
+
|
310 |
+
# Specify the label of the pose that is tree pose.
|
311 |
+
label = 'T Pose'
|
312 |
+
|
313 |
+
#----------------------------------------------------------------------------------------------------------------
|
314 |
+
|
315 |
+
# Check if it is the tree pose.
|
316 |
+
#----------------------------------------------------------------------------------------------------------------
|
317 |
+
|
318 |
+
# Check if one leg is straight
|
319 |
+
if left_knee_angle > 165 and left_knee_angle < 195 or right_knee_angle > 165 and right_knee_angle < 195:
|
320 |
+
|
321 |
+
# Check if the other leg is bended at the required angle.
|
322 |
+
if left_knee_angle > 315 and left_knee_angle < 335 or right_knee_angle > 25 and right_knee_angle < 45:
|
323 |
+
|
324 |
+
# Specify the label of the pose that is tree pose.
|
325 |
+
label = 'Tree Pose'
|
326 |
+
|
327 |
+
# Check for Upward Salute Pose
|
328 |
+
if abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][0] - landmarks[mp_pose.PoseLandmark.LEFT_HIP.value][0]) < 100 and \
|
329 |
+
abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][0] - landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value][0]) < 100 and \
|
330 |
+
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][1] < landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value][1] and \
|
331 |
+
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][1] < landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value][1] and \
|
332 |
+
abs(landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value][1] - landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value][1]) < 50:
|
333 |
+
label = "Upward Salute Pose"
|
334 |
+
|
335 |
+
# Check for Hands Under Feet Pose
|
336 |
+
if landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][1] > landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value][1] and \
|
337 |
+
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][1] > landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value][1] and \
|
338 |
+
abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][0] - landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value][0]) < 50 and \
|
339 |
+
abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][0] - landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value][0]) < 50:
|
340 |
+
label = "Hands Under Feet Pose"
|
341 |
+
|
342 |
+
|
343 |
+
#----------------------------------------------------------------------------------------------------------------
|
344 |
+
|
345 |
+
# Check if the pose is classified successfully
|
346 |
+
if label != 'Unknown Pose':
|
347 |
+
|
348 |
+
# Update the color (to green) with which the label will be written on the image.
|
349 |
+
color = (0, 255, 0)
|
350 |
+
|
351 |
+
# Write the label on the output image.
|
352 |
+
cv2.putText(output_image, label, (10, 30),cv2.FONT_HERSHEY_PLAIN, 2, color, 2)
|
353 |
+
|
354 |
+
# Check if the resultant image is specified to be displayed.
|
355 |
+
if display:
|
356 |
+
|
357 |
+
# Display the resultant image.
|
358 |
+
plt.figure(figsize=[10,10])
|
359 |
+
plt.imshow(output_image[:,:,::-1]);plt.title("Output Image");plt.axis('off');
|
360 |
+
|
361 |
+
else:
|
362 |
+
|
363 |
+
# Return the output image and the classified label.
|
364 |
+
return output_image, label
|
365 |
+
|
366 |
+
#******************************Pose Classification On Real-Time Webcam Feed*****************
|
367 |
+
'''
|
368 |
+
# Setup Pose function for video.
|
369 |
+
pose_video = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.5, model_complexity=1)
|
370 |
+
|
371 |
+
# Initialize the VideoCapture object to read from the webcam.
|
372 |
+
camera_video = cv2.VideoCapture(0)
|
373 |
+
camera_video.set(3,1280)
|
374 |
+
camera_video.set(4,960)
|
375 |
+
|
376 |
+
# Initialize a resizable window.
|
377 |
+
cv2.namedWindow('Pose Classification', cv2.WINDOW_NORMAL)
|
378 |
+
|
379 |
+
# Iterate until the webcam is accessed successfully.
|
380 |
+
while camera_video.isOpened():
|
381 |
+
|
382 |
+
# Read a frame.
|
383 |
+
ok, frame = camera_video.read()
|
384 |
+
|
385 |
+
# Check if frame is not read properly.
|
386 |
+
if not ok:
|
387 |
+
|
388 |
+
# Continue to the next iteration to read the next frame and ignore the empty camera frame.
|
389 |
+
continue
|
390 |
+
|
391 |
+
# Flip the frame horizontally for natural (selfie-view) visualization.
|
392 |
+
frame = cv2.flip(frame, 1)
|
393 |
+
|
394 |
+
# Get the width and height of the frame
|
395 |
+
frame_height, frame_width, _ = frame.shape
|
396 |
+
|
397 |
+
# Resize the frame while keeping the aspect ratio.
|
398 |
+
frame = cv2.resize(frame, (int(frame_width * (640 / frame_height)), 640))
|
399 |
+
|
400 |
+
# Perform Pose landmark detection.
|
401 |
+
frame, landmarks = detectPose(frame, pose_video, display=False)
|
402 |
+
|
403 |
+
# Check if the landmarks are detected.
|
404 |
+
if landmarks:
|
405 |
+
|
406 |
+
# Perform the Pose Classification.
|
407 |
+
frame, _ = classifyPose(landmarks, frame, display=False)
|
408 |
+
|
409 |
+
# Display the frame.
|
410 |
+
cv2.imshow('Pose Classification', frame)
|
411 |
+
|
412 |
+
# Wait until a key is pressed.
|
413 |
+
# Retreive the ASCII code of the key pressed
|
414 |
+
k = cv2.waitKey(1) & 0xFF
|
415 |
+
|
416 |
+
# Check if 'ESC' is pressed.
|
417 |
+
if(k == 27):
|
418 |
+
|
419 |
+
# Break the loop.
|
420 |
+
break
|
421 |
+
|
422 |
+
# Release the VideoCapture object and close the windows.
|
423 |
+
camera_video.release()
|
424 |
+
cv2.destroyAllWindows()
|
425 |
+
|
426 |
+
|
427 |
+
# Create a Gradio interface
|
428 |
+
iface = gr.Interface(
|
429 |
+
fn=detect_yoga_poses,
|
430 |
+
inputs=None,
|
431 |
+
outputs=None,
|
432 |
+
title="Live Yoga Pose Detection",
|
433 |
+
description="This app detects yoga poses from the live camera feed using MediaPipe.",
|
434 |
+
)
|
435 |
+
'''
|
436 |
+
|
437 |
+
#import streamlit as st
|
438 |
+
#import cv2
|
439 |
+
#import numpy as np
|
440 |
+
#from PIL import Image
|
441 |
+
#from transformers import pipeline
|
442 |
+
|
443 |
+
# Function to load model from Hugging Face
|
444 |
+
@st.cache(allow_output_mutation=True)
|
445 |
+
def load_model():
|
446 |
+
return pipeline("pose-detection", device=0) # Adjust device as per your requirement
|
447 |
+
|
448 |
+
# Function to detect yoga pose from image
|
449 |
+
def detect_yoga_pose(image):
|
450 |
+
# Convert PIL image to OpenCV format
|
451 |
+
cv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
452 |
+
# Your pose detection logic here
|
453 |
+
# Replace the following line with your actual pose detection code
|
454 |
+
return "Detected yoga pose: Warrior II"
|
455 |
+
|
456 |
+
def main():
|
457 |
+
st.title("Yoga Pose Detection from Live Camera Feed")
|
458 |
+
|
459 |
+
# Load the model
|
460 |
+
model = load_model()
|
461 |
+
|
462 |
+
|
463 |
+
|
464 |
+
|
465 |
+
# Setup Pose function for video.
|
466 |
+
pose_video = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.5, model_complexity=1)
|
467 |
+
|
468 |
+
# Accessing web cam : Initialize the VideoCapture object to read from the webcam.
|
469 |
+
camera_video = cv2.VideoCapture(0)
|
470 |
+
camera_video.set(3,1280)
|
471 |
+
camera_video.set(4,960)
|
472 |
+
|
473 |
+
# Initialize a resizable window.
|
474 |
+
cv2.namedWindow('Pose Classification', cv2.WINDOW_NORMAL)
|
475 |
+
|
476 |
+
# Iterate until the webcam is accessed successfully.
|
477 |
+
while camera_video.isOpened():
|
478 |
+
|
479 |
+
# Read a frame.
|
480 |
+
ok, frame = camera_video.read()
|
481 |
+
|
482 |
+
# Check if frame is not read properly.
|
483 |
+
if not ok:
|
484 |
+
|
485 |
+
# Continue to the next iteration to read the next frame and ignore the empty camera frame.
|
486 |
+
continue
|
487 |
+
|
488 |
+
# Flip the frame horizontally for natural (selfie-view) visualization.
|
489 |
+
frame = cv2.flip(frame, 1)
|
490 |
+
|
491 |
+
# Get the width and height of the frame
|
492 |
+
frame_height, frame_width, _ = frame.shape
|
493 |
+
|
494 |
+
# Resize the frame while keeping the aspect ratio.
|
495 |
+
frame = cv2.resize(frame, (int(frame_width * (640 / frame_height)), 640))
|
496 |
+
|
497 |
+
# Perform Pose landmark detection.
|
498 |
+
frame, landmarks = detectPose(frame, pose_video, display=False)
|
499 |
+
|
500 |
+
# Check if the landmarks are detected.
|
501 |
+
if landmarks:
|
502 |
+
|
503 |
+
# Perform the Pose Classification.
|
504 |
+
frame, _ = classifyPose(landmarks, frame, display=False)
|
505 |
+
|
506 |
+
# Display the frame.
|
507 |
+
cv2.imshow('Pose Classification', frame)
|
508 |
+
|
509 |
+
# Wait until a key is pressed.
|
510 |
+
# Retreive the ASCII code of the key pressed
|
511 |
+
k = cv2.waitKey(1) & 0xFF
|
512 |
+
|
513 |
+
# Check if 'ESC' is pressed.
|
514 |
+
if(k == 27):
|
515 |
+
|
516 |
+
# Break the loop.
|
517 |
+
break
|
518 |
+
|
519 |
+
# Release the VideoCapture object, close Streamlit app and close the windows.
|
520 |
+
camera_video.release()
|
521 |
+
st.stop()
|
522 |
+
cv2.destroyAllWindows()
|
523 |
+
|
524 |
+
|
525 |
+
|
526 |
+
|
527 |
+
|
528 |
+
|
529 |
+
|
530 |
+
|
531 |
+
|
532 |
+
|
533 |
+
|
534 |
+
'''
|
535 |
+
|
536 |
+
# Accessing the webcam
|
537 |
+
cap = cv2.VideoCapture(0)
|
538 |
+
|
539 |
+
# Run the app
|
540 |
+
while True:
|
541 |
+
ret, frame = cap.read()
|
542 |
+
|
543 |
+
# Display the webcam feed
|
544 |
+
st.image(frame, channels="BGR")
|
545 |
+
|
546 |
+
# Convert the OpenCV frame to PIL image
|
547 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
548 |
+
#pil_image = Image.fromarray(frame)
|
549 |
+
|
550 |
+
# Detect yoga pose from the image
|
551 |
+
pose = detect_yoga_pose(pil_image)
|
552 |
+
|
553 |
+
# Display the detected yoga pose
|
554 |
+
st.write("Detected Yoga Pose:", pose)
|
555 |
+
|
556 |
+
# Close the webcam feed
|
557 |
+
if st.button("Stop"):
|
558 |
+
break
|
559 |
+
|
560 |
+
# Release the webcam and close Streamlit app
|
561 |
+
cap.release()
|
562 |
+
st.stop()
|
563 |
+
'''
|
564 |
+
|
565 |
+
if __name__ == "__main__":
|
566 |
+
main()
|