Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
from __future__ import annotations | |
import os | |
import pathlib | |
import shlex | |
import subprocess | |
import tarfile | |
if os.environ.get('SYSTEM') == 'spaces': | |
subprocess.call(shlex.split('pip uninstall -y opencv-python')) | |
subprocess.call(shlex.split('pip uninstall -y opencv-python-headless')) | |
subprocess.call( | |
shlex.split('pip install opencv-python-headless==4.5.5.64')) | |
import gradio as gr | |
import huggingface_hub | |
import mediapipe as mp | |
import numpy as np | |
mp_drawing = mp.solutions.drawing_utils | |
mp_drawing_styles = mp.solutions.drawing_styles | |
mp_pose = mp.solutions.pose | |
TITLE = 'MediaPipe Human Pose Estimation' | |
DESCRIPTION = 'https://google.github.io/mediapipe/' | |
HF_TOKEN = os.getenv('HF_TOKEN') | |
def load_sample_images() -> list[pathlib.Path]: | |
image_dir = pathlib.Path('images') | |
if not image_dir.exists(): | |
image_dir.mkdir() | |
dataset_repo = 'hysts/input-images' | |
filenames = ['002.tar'] | |
for name in filenames: | |
path = huggingface_hub.hf_hub_download(dataset_repo, | |
name, | |
repo_type='dataset', | |
use_auth_token=HF_TOKEN) | |
with tarfile.open(path) as f: | |
f.extractall(image_dir.as_posix()) | |
return sorted(image_dir.rglob('*.jpg')) | |
def run(image: np.ndarray, model_complexity: int, enable_segmentation: bool, | |
min_detection_confidence: float, background_color: str) -> np.ndarray: | |
with mp_pose.Pose( | |
static_image_mode=True, | |
model_complexity=model_complexity, | |
enable_segmentation=enable_segmentation, | |
min_detection_confidence=min_detection_confidence) as pose: | |
results = pose.process(image) | |
res = image[:, :, ::-1].copy() | |
if enable_segmentation: | |
if background_color == 'white': | |
bg_color = 255 | |
elif background_color == 'black': | |
bg_color = 0 | |
elif background_color == 'green': | |
bg_color = (0, 255, 0) # type: ignore | |
else: | |
raise ValueError | |
if results.segmentation_mask is not None: | |
res[results.segmentation_mask <= 0.1] = bg_color | |
else: | |
res[:] = bg_color | |
mp_drawing.draw_landmarks(res, | |
results.pose_landmarks, | |
mp_pose.POSE_CONNECTIONS, | |
landmark_drawing_spec=mp_drawing_styles. | |
get_default_pose_landmarks_style()) | |
return res[:, :, ::-1] | |
model_complexities = list(range(3)) | |
background_colors = ['white', 'black', 'green'] | |
image_paths = load_sample_images() | |
examples = [[ | |
path.as_posix(), model_complexities[1], True, 0.5, background_colors[0] | |
] for path in image_paths] | |
gr.Interface( | |
fn=run, | |
inputs=[ | |
gr.Image(label='Input', type='numpy'), | |
gr.Radio(label='Model Complexity', | |
choices=model_complexities, | |
type='index', | |
value=model_complexities[1]), | |
gr.Checkbox(default=True, label='Enable Segmentation'), | |
gr.Slider(label='Minimum Detection Confidence', | |
minimum=0, | |
maximum=1, | |
step=0.05, | |
value=0.5), | |
gr.Radio(label='Background Color', | |
choices=background_colors, | |
type='value', | |
value=background_colors[0]), | |
], | |
outputs=gr.Image(label='Output', type='numpy'), | |
examples=examples, | |
title=TITLE, | |
description=DESCRIPTION, | |
).launch(show_api=False) | |