File size: 8,013 Bytes
5d52c32
6c226f9
 
 
8e787d3
6c226f9
d790c0b
 
 
88183ad
8c54c03
 
 
 
3801ebb
6c226f9
9d6fa91
66efbc3
d790c0b
6c226f9
 
 
8c54c03
 
 
 
 
 
 
 
 
 
 
 
 
 
3801ebb
8c54c03
 
 
6c226f9
 
5d52c32
8c54c03
3c0cd8e
 
6c226f9
8c54c03
 
 
 
 
6c226f9
 
 
 
 
 
 
 
 
 
8c54c03
d790c0b
 
8c54c03
d790c0b
 
 
 
8c54c03
d790c0b
 
 
8c54c03
d790c0b
 
 
 
 
8c54c03
d790c0b
 
 
 
8c54c03
d790c0b
8c54c03
d790c0b
 
 
 
 
 
8c54c03
5d52c32
8c54c03
6c226f9
66efbc3
8c54c03
 
 
d790c0b
 
 
 
 
6c226f9
b97a3c2
 
0a7fcda
8c54c03
6c226f9
 
 
 
47407ef
6c226f9
 
 
 
3ce82e9
8c54c03
3c0cd8e
 
8c54c03
3c0cd8e
8c54c03
3c0cd8e
 
 
 
 
 
 
3ce82e9
8c54c03
6c226f9
 
8c54c03
6c226f9
8c54c03
6c226f9
 
 
 
 
 
7097513
3ce82e9
8c54c03
7097513
6c226f9
8c54c03
6c226f9
643ae12
 
 
6c226f9
 
 
 
 
3c0cd8e
010c790
8529a0b
 
643ae12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8529a0b
 
 
 
643ae12
 
 
 
 
d8b0b49
 
 
 
 
 
 
 
643ae12
 
8529a0b
 
 
47407ef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import spaces
import torch

import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read

import tempfile
import os
import time

# Available models to choose from
MODEL_OPTIONS = ["BUT-FIT/DeCRED-base", "BUT-FIT/DeCRED-small", "BUT-FIT/ED-base", "BUT-FIT/ED-small"]
DEFAULT_MODEL = MODEL_OPTIONS[1]

BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600  # limit to 1 hour YouTube files

device = 0 if torch.cuda.is_available() else "cpu"


# Function to initialize pipeline based on model selection
def initialize_pipeline(model_name):
    pipe = pipeline(
        task="automatic-speech-recognition",
        model=model_name,
        feature_extractor=model_name,
        chunk_length_s=30,
        device=device,
        trust_remote_code=True
    )
    pipe.type = "seq2seq"
    return pipe


# Initialize the pipeline with a default model (it will be updated after user selects one)
pipe = initialize_pipeline(DEFAULT_MODEL)
pipe.type = "seq2seq"


@spaces.GPU
def transcribe(inputs, selected_model):
    if inputs is None:
        raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")

    # Update the pipeline with the selected model
    pipe = initialize_pipeline(selected_model)

    text = pipe(inputs, batch_size=BATCH_SIZE)["text"]
    return text


def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    HTML_str = (
        f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
        " </center>"
    )
    return HTML_str


def download_yt_audio(yt_url, filename):
    info_loader = youtube_dl.YoutubeDL()

    try:
        info = info_loader.extract_info(yt_url, download=False)
    except youtube_dl.utils.DownloadError as err:
        raise gr.Error(str(err))

    file_length = info["duration_string"]
    file_h_m_s = file_length.split(":")
    file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]

    if len(file_h_m_s) == 1:
        file_h_m_s.insert(0, 0)
    if len(file_h_m_s) == 2:
        file_h_m_s.insert(0, 0)
    file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]

    if file_length_s > YT_LENGTH_LIMIT_S:
        yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
        file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
        raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")

    ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}

    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        try:
            ydl.download([yt_url])
        except youtube_dl.utils.ExtractorError as err:
            raise gr.Error(str(err))


@spaces.GPU
def yt_transcribe(yt_url, selected_model, max_filesize=75.0):
    html_embed_str = _return_yt_html_embed(yt_url)

    # Update the pipeline with the selected model
    pipe = initialize_pipeline(selected_model)

    with tempfile.TemporaryDirectory() as tmpdirname:
        filepath = os.path.join(tmpdirname, "video.mp4")
        download_yt_audio(yt_url, filepath)
        with open(filepath, "rb") as f:
            inputs = f.read()

    inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
    inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}

    text = pipe(inputs, batch_size=BATCH_SIZE)["text"]

    return html_embed_str, text


demo = gr.Blocks(theme=gr.themes.Ocean())

mf_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(sources="microphone", type="filepath"),
        gr.Dropdown(choices=MODEL_OPTIONS, label="Model", value=DEFAULT_MODEL)
    ],
    outputs="text",
    title="Transcribe Audio",
    description=(
        "Transcribe long-form microphone or audio inputs with the click of a button! Select a model from the dropdown."
    ),
    allow_flagging="never",
)

file_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(sources="upload", type="filepath", label="Audio file"),
        gr.Dropdown(choices=MODEL_OPTIONS, label="Model", value=DEFAULT_MODEL)
    ],
    outputs="text",
    title="Transcribe Audio",
    description=(
        "Transcribe audio files with the click of a button! Select a model from the dropdown."
    ),
    allow_flagging="never",
)

yt_transcribe = gr.Interface(
    fn=yt_transcribe,
    inputs=[
        gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
        gr.Dropdown(choices=MODEL_OPTIONS, label="Model", value=DEFAULT_MODEL)
    ],
    outputs=["html", "text"],
    title="Transcribe YouTube",
    description=(
        """
        ### *Currently only works on local instances of this space, as youtube-dl does not function from Hugging Face servers.*
        Transcribe long-form YouTube videos with the click of a button! Select a model from the dropdown."""
    ),
    allow_flagging="never",
)

with demo:
    gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])

    gr.Markdown(
        """
        ## Overview
        This space demonstrates the performance of **DeCRED** (**De**coder-**C**entric **R**egularization in **E**ncoder-**D**ecoder) for automatic speech recognition (ASR). 
        DeCRED enhances model robustness and generalization, particularly in out-of-domain scenarios, by introducing auxiliary classifiers in the decoder layers of encoder-decoder ASR architectures.
        
        ## Key Features
        - **Auxiliary Classifiers**: DeCRED integrates auxiliary classifiers in the decoder module to regularize training, improving the model’s ability to generalize across domains.
        - **Enhanced Decoding**: It proposes two new decoding strategies that leverage auxiliary classifiers to re-estimate token probabilities, resulting in more accurate ASR predictions.
        - **Strong Baseline**: Built on the **E-branchformer** architecture, DeCRED achieves competitive word error rates (WER) compared to Whisper-medium and OWSM v3 while requiring significantly less training data and a smaller model size.
        - **Out-of-Domain Performance**: DeCRED demonstrates strong generalization, reducing WERs by 2.7 and 2.9 points on the AMI and Gigaspeech datasets, respectively.
        
        ## Disclaimer
        This space currently runs on basic CPU hardware, so generation might take a bit longer (approximately four times the length of the audio). 
        You can clone the repository and run it locally for better performance. 
        Please refer to the [Hugging Face documentation](https://huggingface.co/docs/hub/spaces-overview#clone-the-repository) 
        for instructions on how to clone the repository and run it locally. 
        The model is not perfect and may make errors, so please use it responsibly.
        
        ## Explore the Models
        - [DeCRED Base](https://huggingface.co/BUT-FIT/DeCRED-base)
        - [DeCRED Small](https://huggingface.co/BUT-FIT/DeCRED-small)
        - [ED Base](https://huggingface.co/BUT-FIT/ED-base)
        - [ED Small](https://huggingface.co/BUT-FIT/ED-small)
        
        ## Citation
        If you use DeCRED in your research, please cite the following paper:
        
        ```bibtex
        @misc{polok2024improvingautomaticspeechrecognition,
              title={Improving Automatic Speech Recognition with Decoder-Centric Regularisation in Encoder-Decoder Models}, 
              author={Alexander Polok and Santosh Kesiraju and Karel Beneš and Lukáš Burget and Jan Černocký},
              year={2024},
              eprint={2410.17437},
              archivePrefix={arXiv},
              primaryClass={eess.AS},
              url={https://arxiv.org/abs/2410.17437}, 
        }
        ```
        """
    )

demo.queue().launch(ssr_mode=False)