File size: 7,685 Bytes
51ff9e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import copy
import time

from pydantic import BaseModel, Field


class Cost(BaseModel):
    model: str
    cost: float
    timestamp: float = Field(default_factory=time.time)


class ResponseLatency(BaseModel):
    """Metric tracking the round-trip time per completion call."""

    model: str
    latency: float
    response_id: str


class TokenUsage(BaseModel):
    """Metric tracking detailed token usage per completion call."""

    model: str = Field(default='')
    prompt_tokens: int = Field(default=0)
    completion_tokens: int = Field(default=0)
    cache_read_tokens: int = Field(default=0)
    cache_write_tokens: int = Field(default=0)
    context_window: int = Field(default=0)
    per_turn_token: int = Field(default=0)
    response_id: str = Field(default='')

    def __add__(self, other: 'TokenUsage') -> 'TokenUsage':
        """Add two TokenUsage instances together."""
        return TokenUsage(
            model=self.model,
            prompt_tokens=self.prompt_tokens + other.prompt_tokens,
            completion_tokens=self.completion_tokens + other.completion_tokens,
            cache_read_tokens=self.cache_read_tokens + other.cache_read_tokens,
            cache_write_tokens=self.cache_write_tokens + other.cache_write_tokens,
            context_window=max(self.context_window, other.context_window),
            per_turn_token=other.per_turn_token,
            response_id=self.response_id,
        )


class Metrics:
    """Metrics class can record various metrics during running and evaluation.
    We track:
      - accumulated_cost and costs
      - A list of ResponseLatency
      - A list of TokenUsage (one per call).
    """

    def __init__(self, model_name: str = 'default') -> None:
        self._accumulated_cost: float = 0.0
        self._costs: list[Cost] = []
        self._response_latencies: list[ResponseLatency] = []
        self.model_name = model_name
        self._token_usages: list[TokenUsage] = []
        self._accumulated_token_usage: TokenUsage = TokenUsage(
            model=model_name,
            prompt_tokens=0,
            completion_tokens=0,
            cache_read_tokens=0,
            cache_write_tokens=0,
            context_window=0,
            response_id='',
        )

    @property
    def accumulated_cost(self) -> float:
        return self._accumulated_cost

    @accumulated_cost.setter
    def accumulated_cost(self, value: float) -> None:
        if value < 0:
            raise ValueError('Total cost cannot be negative.')
        self._accumulated_cost = value

    @property
    def costs(self) -> list[Cost]:
        return self._costs

    @property
    def response_latencies(self) -> list[ResponseLatency]:
        if not hasattr(self, '_response_latencies'):
            self._response_latencies = []
        return self._response_latencies

    @response_latencies.setter
    def response_latencies(self, value: list[ResponseLatency]) -> None:
        self._response_latencies = value

    @property
    def token_usages(self) -> list[TokenUsage]:
        if not hasattr(self, '_token_usages'):
            self._token_usages = []
        return self._token_usages

    @token_usages.setter
    def token_usages(self, value: list[TokenUsage]) -> None:
        self._token_usages = value

    @property
    def accumulated_token_usage(self) -> TokenUsage:
        """Get the accumulated token usage, initializing it if it doesn't exist."""
        if not hasattr(self, '_accumulated_token_usage'):
            self._accumulated_token_usage = TokenUsage(
                model=self.model_name,
                prompt_tokens=0,
                completion_tokens=0,
                cache_read_tokens=0,
                cache_write_tokens=0,
                context_window=0,
                response_id='',
            )
        return self._accumulated_token_usage

    def add_cost(self, value: float) -> None:
        if value < 0:
            raise ValueError('Added cost cannot be negative.')
        self._accumulated_cost += value
        self._costs.append(Cost(cost=value, model=self.model_name))

    def add_response_latency(self, value: float, response_id: str) -> None:
        self._response_latencies.append(
            ResponseLatency(
                latency=max(0.0, value), model=self.model_name, response_id=response_id
            )
        )

    def add_token_usage(
        self,
        prompt_tokens: int,
        completion_tokens: int,
        cache_read_tokens: int,
        cache_write_tokens: int,
        context_window: int,
        response_id: str,
    ) -> None:
        """Add a single usage record."""

        # Token each turn for calculating context usage.
        per_turn_token = prompt_tokens + completion_tokens

        usage = TokenUsage(
            model=self.model_name,
            prompt_tokens=prompt_tokens,
            completion_tokens=completion_tokens,
            cache_read_tokens=cache_read_tokens,
            cache_write_tokens=cache_write_tokens,
            context_window=context_window,
            per_turn_token=per_turn_token,
            response_id=response_id,
        )
        self._token_usages.append(usage)

        # Update accumulated token usage using the __add__ operator
        self._accumulated_token_usage = self.accumulated_token_usage + TokenUsage(
            model=self.model_name,
            prompt_tokens=prompt_tokens,
            completion_tokens=completion_tokens,
            cache_read_tokens=cache_read_tokens,
            cache_write_tokens=cache_write_tokens,
            context_window=context_window,
            per_turn_token=per_turn_token,
            response_id='',
        )

    def merge(self, other: 'Metrics') -> None:
        """Merge 'other' metrics into this one."""
        self._accumulated_cost += other.accumulated_cost
        self._costs += other._costs
        # use the property so older picked objects that lack the field won't crash
        self.token_usages += other.token_usages
        self.response_latencies += other.response_latencies

        # Merge accumulated token usage using the __add__ operator
        self._accumulated_token_usage = (
            self.accumulated_token_usage + other.accumulated_token_usage
        )

    def get(self) -> dict:
        """Return the metrics in a dictionary."""
        return {
            'accumulated_cost': self._accumulated_cost,
            'accumulated_token_usage': self.accumulated_token_usage.model_dump(),
            'costs': [cost.model_dump() for cost in self._costs],
            'response_latencies': [
                latency.model_dump() for latency in self._response_latencies
            ],
            'token_usages': [usage.model_dump() for usage in self._token_usages],
        }

    def reset(self) -> None:
        self._accumulated_cost = 0.0
        self._costs = []
        self._response_latencies = []
        self._token_usages = []
        # Reset accumulated token usage with a new instance
        self._accumulated_token_usage = TokenUsage(
            model=self.model_name,
            prompt_tokens=0,
            completion_tokens=0,
            cache_read_tokens=0,
            cache_write_tokens=0,
            context_window=0,
            response_id='',
        )

    def log(self) -> str:
        """Log the metrics."""
        metrics = self.get()
        logs = ''
        for key, value in metrics.items():
            logs += f'{key}: {value}\n'
        return logs

    def copy(self) -> 'Metrics':
        """Create a deep copy of the Metrics object."""
        return copy.deepcopy(self)

    def __repr__(self) -> str:
        return f'Metrics({self.get()}'