File size: 8,181 Bytes
51ff9e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "\n",
    "import pandas as pd\n",
    "from tqdm import tqdm\n",
    "\n",
    "tqdm.pandas()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# 1. Load raw data and convert to training data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import gzip\n",
    "import json\n",
    "\n",
    "from tqdm import tqdm\n",
    "\n",
    "FILE_PATHS = [\n",
    "    'YOURPATH-no-hint-train-t05-run_1/output.with_completions.jsonl.gz',\n",
    "    'YOURPATH-no-hint-train-t05-run_2/output.with_completions.jsonl.gz',\n",
    "]\n",
    "\n",
    "# More memory efficient for large files\n",
    "# Initialize lists to store the data\n",
    "data = []\n",
    "\n",
    "\n",
    "# Read file line by line\n",
    "for FILE_PATH in FILE_PATHS:\n",
    "    with gzip.open(FILE_PATH, 'rb') as f:  # Use 'rb' for gzipped files\n",
    "        for i, line in tqdm(\n",
    "            enumerate(f), desc=f'Processing {FILE_PATH.split(\"/\")[-1]}'\n",
    "        ):\n",
    "            # Parse only the fields we need\n",
    "            raw_data = json.loads(line)\n",
    "            data.append(\n",
    "                {\n",
    "                    'resolved': raw_data['report']['resolved'],\n",
    "                    'messages': raw_data['raw_completions']['messages']\n",
    "                    if raw_data['raw_completions'] is not None\n",
    "                    else None,\n",
    "                    'git_patch': raw_data['test_result'].get('git_patch', ''),\n",
    "                    'tools': raw_data['raw_completions']['tools']\n",
    "                    if raw_data['raw_completions'] is not None\n",
    "                    and 'tools' in raw_data['raw_completions']\n",
    "                    else None,\n",
    "                }\n",
    "            )\n",
    "\n",
    "# Convert to DataFrame after collecting all data\n",
    "df = pd.DataFrame(data)\n",
    "print(f'#total amount of data={len(df)}')\n",
    "df = df[~df['messages'].isna()]\n",
    "print(f'#total amount of data after removing nan={len(df)}')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Filter"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def _contains_multiple_tool_calls(messages: list[dict]) -> bool:\n",
    "    return any(\n",
    "        message.get('tool_calls') and len(message['tool_calls']) > 1\n",
    "        for message in messages\n",
    "    )\n",
    "\n",
    "\n",
    "df['contains_multiple_tool_calls'] = df['messages'].apply(_contains_multiple_tool_calls)\n",
    "display(df.groupby(['contains_multiple_tool_calls'])['resolved'].sum())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import copy\n",
    "\n",
    "# Convert function calling messages to non-function calling messages\n",
    "from openhands.llm.fn_call_converter import (\n",
    "    FunctionCallConversionError,\n",
    "    convert_fncall_messages_to_non_fncall_messages,\n",
    "    convert_from_multiple_tool_calls_to_single_tool_call_messages,\n",
    ")\n",
    "\n",
    "total_failed = 0\n",
    "\n",
    "\n",
    "def _convert_messages(messages: list[dict], tools: list[dict]) -> list[dict]:\n",
    "    global total_failed\n",
    "    message_copy = copy.deepcopy(messages)\n",
    "    for message in message_copy:\n",
    "        if message['content'] is None:\n",
    "            message['content'] = ''\n",
    "    try:\n",
    "        return convert_fncall_messages_to_non_fncall_messages(\n",
    "            message_copy, tools, add_in_context_learning_example=False\n",
    "        )\n",
    "    except FunctionCallConversionError:\n",
    "        total_failed += 1\n",
    "        # print(f'Failed to convert messages: {messages}\\nTools: {tools}')\n",
    "        # traceback.print_exc()\n",
    "        return None\n",
    "\n",
    "\n",
    "df['converted_messages'] = df.apply(\n",
    "    lambda row: convert_from_multiple_tool_calls_to_single_tool_call_messages(\n",
    "        row['messages'], ignore_final_tool_result=True\n",
    "    ),\n",
    "    axis=1,\n",
    ")\n",
    "df['nonfncall_messages'] = df.apply(\n",
    "    lambda row: _convert_messages(row['converted_messages'], row['tools']), axis=1\n",
    ")\n",
    "print('total nan', df['nonfncall_messages'].isna().sum())\n",
    "df = df[~df['nonfncall_messages'].isna()]\n",
    "print(f'Total failed: {total_failed}')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Tokenization"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from pandarallel import pandarallel\n",
    "from transformers import AutoTokenizer\n",
    "\n",
    "os.environ['TOKENIZERS_PARALLELISM'] = 'false'\n",
    "pandarallel.initialize(progress_bar=True, verbose=1, nb_workers=16)\n",
    "tokenizer = AutoTokenizer.from_pretrained('Qwen/Qwen2.5-7B-Instruct')\n",
    "df['n_tokens'] = df['rm_conv'].parallel_apply(\n",
    "    lambda x: len(tokenizer.apply_chat_template(x))\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(f'BEFORE: #total={len(df)}')\n",
    "df_selected = df[df['n_tokens'] < 131072]\n",
    "print(f'AFTER(truncated to 128k): #total={len(df_selected)}')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "df_selected['n_tokens'].describe()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# ecdf of n_tokens\n",
    "import matplotlib.pyplot as plt\n",
    "import seaborn as sns\n",
    "\n",
    "display(df.groupby(['resolved'])['n_tokens'].describe())\n",
    "sns.ecdfplot(x='n_tokens', data=df, hue='resolved')\n",
    "plt.show()\n",
    "\n",
    "print(f'#total={len(df)}')\n",
    "df_selected = df[df['n_tokens'] < 131072]\n",
    "print(f'#selected={len(df_selected)}')\n",
    "display(df_selected.groupby(['resolved'])['n_tokens'].describe())\n",
    "sns.ecdfplot(x='n_tokens', data=df_selected, hue='resolved')\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "df_selected[~df_selected['resolved']]['n_tokens'].describe()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "df_selected['resolved'].value_counts()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "df_selected.groupby(['resolved'])['n_tokens'].describe()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Save Resolved Messages for SFT"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "df_selected[df_selected['resolved']][['nonfncall_messages']].rename(\n",
    "    columns={'nonfncall_messages': 'messages'}\n",
    ").to_json(\n",
    "    os.path.join(\n",
    "        'YOUR_OUTPUT_FOLDER',\n",
    "        f'policy_traj_128k_swegym_{df_selected[\"resolved\"].value_counts()[True]}i.jsonl',\n",
    "    ),\n",
    "    lines=True,\n",
    "    orient='records',\n",
    ")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "openhands-ai-CPy6G0pU-py3.12",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}