Spaces:
Build error
Build error
File size: 22,796 Bytes
51ff9e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 |
import os
import tempfile
import time
from functools import partial
import pandas as pd
from report_utils import (
check_coverage,
check_mutation,
count_methods,
get_lines_of_code,
)
from evaluation.benchmarks.testgeneval.compute_readability import compute_readability
from evaluation.benchmarks.testgeneval.constants import (
COVERAGE_PREFIX,
MUTATION_BUFFER,
MUTATION_TEMPLATE,
MUTATION_TIMEOUT,
TESTS_SUFFIX,
)
from evaluation.benchmarks.testgeneval.metrics import (
bleu,
edit_sim,
exact_match,
rouge_l,
)
from evaluation.benchmarks.testgeneval.pygments_utils import tokenize_code
from evaluation.benchmarks.testgeneval.run_infer import get_instance_docker_image
from evaluation.benchmarks.testgeneval.test_filter import filter_tests
from evaluation.benchmarks.testgeneval.test_spec import (
TestGenEvalInstance,
TestSpec,
make_test_spec,
)
from evaluation.benchmarks.testgeneval.utils import load_testgeneval_dataset
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from openhands.core.config import OpenHandsConfig, SandboxConfig, get_parser
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime
from openhands.events.action import CmdRunAction
from openhands.events.observation import CmdOutputObservation
from openhands.utils.async_utils import call_async_from_sync
DOCKER_IMAGE_PREFIX = os.environ.get('EVAL_DOCKER_IMAGE_PREFIX', 'docker.io/kdjain/')
logger.info(f'Using docker image prefix: {DOCKER_IMAGE_PREFIX}')
def get_config(instance: pd.Series) -> OpenHandsConfig:
base_container_image = get_instance_docker_image(instance['instance_id_swebench'])
assert base_container_image, (
f'Invalid container image for instance {instance["instance_id_swebench"]}.'
)
logger.info(f'Using instance container image: {base_container_image}.')
return OpenHandsConfig(
run_as_openhands=False,
runtime=os.environ.get('RUNTIME', 'eventstream'),
sandbox=SandboxConfig(
base_container_image=base_container_image,
use_host_network=False,
timeout=1800,
api_key=os.environ.get('ALLHANDS_API_KEY'),
remote_runtime_api_url=os.environ.get(
'SANDBOX_REMOTE_RUNTIME_API_URL', 'http://localhost:8000'
),
),
workspace_base=None,
workspace_mount_path=None,
)
def compute_lexical_metrics(pred_suite, gold_suite):
pred_loc = get_lines_of_code(pred_suite)
gold_loc = get_lines_of_code(gold_suite)
pred_methods = count_methods(pred_suite)
gold_methods = count_methods(gold_suite)
readability_pred = compute_readability(pred_suite)
readability_gold = compute_readability(gold_suite)
preds = tokenize_code(pred_suite)
golds = tokenize_code(gold_suite)
return {
'pred_loc': pred_loc,
'gold_loc': gold_loc,
'pred_readability': readability_pred,
'gold_readability': readability_gold,
'pred_methods': pred_methods,
'gold_methods': gold_methods,
'bleu': bleu(preds, golds),
'xmatch': exact_match(preds, golds),
'edit_sim': edit_sim(preds, golds),
'rouge_f': rouge_l(golds, preds)['f'],
'rouge_p': rouge_l(golds, preds)['p'],
'rouge_r': rouge_l(golds, preds)['r'],
}
def run_command(runtime, command, timeout=600):
action = CmdRunAction(command=command)
action.set_hard_timeout(timeout)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert obs.exit_code == 0
return obs
def run_tests(runtime, instance, test_script, log_file='/tmp/test_output.log'):
action = CmdRunAction(command=f'bash {test_script} > {log_file} 2>&1 & echo $!')
action.set_hard_timeout(60)
obs = runtime.run_action(action)
assert isinstance(obs, CmdOutputObservation), 'Failed to start test script.'
pid = obs.content.split()[-1].strip()
logger.info(f'[{instance.instance_id}] Test process started with PID: {pid}')
start_time = time.time()
timeout = 1800
while True:
elapsed_time = time.time() - start_time
if elapsed_time > timeout:
logger.info(f'[{instance.instance_id}] Test process timed out.')
instance['test_result']['report']['test_timeout'] = True
break
check_action = CmdRunAction(command=f'ps -p {pid} > /dev/null; echo $?')
check_obs = runtime.run_action(check_action)
if (
isinstance(check_obs, CmdOutputObservation)
and len(check_obs.content.split()) > 0
and check_obs.content.split()[-1].strip() == '1'
):
logger.info(f'[{instance.instance_id}] Test process completed.')
break
time.sleep(30)
test_action = CmdRunAction(command=f'cat {log_file}')
test_action.set_hard_timeout(300)
test_obs = runtime.run_action(test_action)
assert isinstance(test_obs, CmdOutputObservation), 'Failed to retrieve test output.'
return test_obs.exit_code, test_obs.content, elapsed_time
def run_mutation_testing(
runtime, instance, mutation_script, log_file='/tmp/mutation_output.log'
):
action = CmdRunAction(command=f'bash {mutation_script} > {log_file} 2>&1 & echo $!')
action.set_hard_timeout(60)
obs = runtime.run_action(action)
assert isinstance(obs, CmdOutputObservation), 'Failed to start test script.'
pid = obs.content.split()[-1].strip()
logger.info(f'[{instance.instance_id}] Mutation process started with PID: {pid}')
start_time = time.time()
timeout = 4000
while True:
elapsed_time = time.time() - start_time
if elapsed_time > timeout:
logger.info(f'[{instance.instance_id}] Mutation process timed out.')
instance['test_result']['report']['mutation_timeout'] = True
break
check_action = CmdRunAction(command=f'ps -p {pid} > /dev/null; echo $?')
check_obs = runtime.run_action(check_action)
if (
isinstance(check_obs, CmdOutputObservation)
and len(check_obs.content.split()) > 0
and check_obs.content.split()[-1].strip() == '1'
):
logger.info(f'[{instance.instance_id}] Mutation process completed.')
break
time.sleep(30)
assert isinstance(obs, CmdOutputObservation), 'Failed to run mutation script.'
mutation_action = CmdRunAction(command=f'cat {log_file}')
mutation_action.set_hard_timeout(300)
mutation_obs = runtime.run_action(mutation_action)
assert isinstance(mutation_obs, CmdOutputObservation), (
'Failed to retrieve mutation output.'
)
return mutation_obs.exit_code, mutation_obs.content
def grade_test_output(
test_suite: str, instance: pd.Series, test_output: str, test_spec: TestSpec, runtime
):
"""
Two-pass test grading with short-circuiting:
1. Run all tests to identify passing/failing tests
2. If no failing tests, evaluate coverage immediately
3. Otherwise, run only passing tests for coverage analysis
"""
unit_test_output, coverage_output = '', ''
if TESTS_SUFFIX in test_output:
unit_test_output = test_output.split(TESTS_SUFFIX)[0]
if not unit_test_output:
return (
False,
0,
'',
'',
{
'total_tests': 0,
'passing_tests': 0,
'failing_tests': 0,
'any_pass': False,
'all_pass': False,
'passing_test_names': [],
'failing_test_names': [],
},
)
logger.info('Calling filter unit tests')
filtered_content, passing_tests, failing_tests = filter_tests(
test_suite, unit_test_output, test_spec.repo
)
total_tests = len(passing_tests) + len(failing_tests)
test_stats = {
'total_tests': total_tests,
'passing_tests': len(passing_tests),
'failing_tests': len(failing_tests),
'any_pass': len(passing_tests) > 0,
'all_pass': len(failing_tests) == 0 and total_tests > 0,
'passing_test_names': passing_tests,
'failing_test_names': failing_tests,
}
if not passing_tests:
return False, 0, unit_test_output, coverage_output, test_stats
# If all tests pass, evaluate coverage immediately
if not failing_tests:
coverage = 0
cov_success = False
if COVERAGE_PREFIX in test_output:
coverage_output = test_output.split(COVERAGE_PREFIX)[1]
_, coverage = check_coverage(coverage_output, test_spec.code_file)
cov_success = True
# test_stats['filtered_suite'] = test_suite
return cov_success, coverage, unit_test_output, coverage_output, test_stats
cov_success = False
coverage = 0
# Second pass - run coverage on passing tests
if filtered_content:
with tempfile.TemporaryDirectory() as temp_dir:
test_suite_path = os.path.join(temp_dir, 'test_suite.py')
with open(test_suite_path, 'w') as f:
f.write(filtered_content)
runtime.copy_to(test_suite_path, '/tmp')
run_command(runtime, f'cp /tmp/test_suite.py /testbed/{test_spec.test_file}')
_, test_output_second_pass, _ = run_tests(runtime, instance, '/tmp/test.sh')
coverage, coverage_output, unit_test_output = 0, '', test_output_second_pass
if COVERAGE_PREFIX in test_output_second_pass:
coverage_output = test_output_second_pass.split(COVERAGE_PREFIX)[1]
unit_test_output = test_output_second_pass.split(TESTS_SUFFIX)[0]
_, coverage = check_coverage(coverage_output, test_spec.code_file)
cov_success = True
# test_stats['filtered_suite'] = filtered_content
return cov_success, coverage, unit_test_output, coverage_output, test_stats
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
log_dir: str | None = None,
) -> EvalOutput:
"""
Evaluate agent performance on a TestGenEval problem instance.
Note that this signature differs from the expected input to `run_evaluation`. Use
`functools.partial` to provide optional arguments before passing to the evaluation harness.
Args:
log_dir (str | None, default=None): Path to directory where log files will be written. Must
be provided if `reset_logger` is set.
Raises:
AssertionError: if the `reset_logger` flag is set without a provided log directory.
"""
if reset_logger:
assert log_dir is not None, (
"Can't reset logger without a provided log directory."
)
os.makedirs(log_dir, exist_ok=True)
reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
else:
logger.info(f'Starting evaluation for instance {instance.instance_id}.')
config = get_config(instance)
id = instance.instance_id
logger.info(f'Starting evaluation for instance {id}.')
instance['test_result']['id'] = id
instance['test_result']['report'] = {
'test_output': '',
# 'coverage_output': '',
# 'mutation_output': '',
'empty_generation': False,
'error_eval': False,
'all_tests_pass': False,
'tests_pass': False,
'test_timeout': False,
'mutation_timeout': False,
'coverage_success': False,
'mutation_success': False,
'coverage': 0,
'mutation_score': 0,
'mutation_error_interval': -1,
'num_mutants': -1,
}
instance['test_result']['lexical'] = {
'pred_loc': -1,
'gold_loc': -1,
'pred_readability': -1,
'gold_readability': -1,
'pred_methods': -1,
'gold_methods': -1,
'bleu': -1,
'xmatch': -1,
'edit_sim': -1,
'rouge_f': -1,
'rouge_p': -1,
'rouge_r': -1,
}
if instance['test_suite'] == '' or instance['test_suite'] is None:
instance['test_result']['report']['empty_generation'] = True
return EvalOutput(
instance_id=instance.instance_id, test_result=instance['test_result']
)
if not args.skip_lexical:
lexical_metrics = compute_lexical_metrics(
instance['test_suite'], instance['instance']['test_src']
)
instance['test_result']['lexical'] = lexical_metrics
test_suite = instance['test_suite']
test_spec: TestSpec = instance['test_spec']
runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
with tempfile.TemporaryDirectory() as temp_dir:
test_suite_path = os.path.join(temp_dir, 'test_suite.py')
with open(test_suite_path, 'w') as f:
f.write(test_suite)
runtime.copy_to(test_suite_path, '/tmp')
test_script_path = os.path.join(temp_dir, 'test.sh')
with open(test_script_path, 'w') as f:
f.write(test_spec.test_script)
runtime.copy_to(test_script_path, '/tmp')
mutation_script_path = os.path.join(temp_dir, 'mutation.sh')
with open(mutation_script_path, 'w') as f:
f.write(test_spec.mutation_script)
runtime.copy_to(mutation_script_path, '/tmp')
try:
run_command(runtime, 'chmod +x /tmp/test.sh /tmp/mutation.sh')
run_command(runtime, f'cp /tmp/test_suite.py /testbed/{test_spec.test_file}')
# First pass - run all tests
_, test_output, test_time = run_tests(runtime, instance, '/tmp/test.sh')
# Grade tests with two-pass approach
coverage_success, coverage, unit_test_output, coverage_output, test_stats = (
grade_test_output(test_suite, instance, test_output, test_spec, runtime)
)
# Update report with test statistics
instance['test_result']['report'].update(
{
'test_output': unit_test_output,
# 'coverage_output': coverage_output,
'tests_pass': test_stats['any_pass'], # Changed to use any_pass
'all_tests_pass': test_stats['all_pass'], # Added all_pass metric
'coverage_success': coverage_success,
'coverage': coverage if coverage_success else 0,
'test_stats': test_stats,
}
)
# Only run mutation testing if we have passing tests and coverage
if (
not args.skip_mutation
and coverage_success
and test_stats['any_pass']
and coverage > 0
):
mutation_timeout = max(10, 1.5 * test_time)
mutation_toml = MUTATION_TEMPLATE.format(
test_cmd=test_spec.test_cmd,
source_fp=test_spec.code_file,
timeout=mutation_timeout,
)
with tempfile.TemporaryDirectory() as temp_dir:
mutation_toml_path = os.path.join(temp_dir, 'mutation.toml')
with open(mutation_toml_path, 'w') as f:
f.write(mutation_toml)
runtime.copy_to(mutation_toml_path, '/tmp')
run_command(runtime, 'cp /tmp/mutation.toml /testbed/mutation.toml')
mutation_code, mutation_output = run_mutation_testing(
runtime, instance, '/tmp/mutation.sh'
)
# instance['test_result']['report']['mutation_output'] = mutation_output
if mutation_output and mutation_code == 0:
(
mutation_success,
num_mutants,
mutation_score,
mutation_confidence_interval,
) = check_mutation(mutation_output)
instance['test_result']['report']['num_mutants'] = num_mutants
instance['test_result']['report']['mutation_success'] = mutation_success
instance['test_result']['report']['mutation_score'] = mutation_score
instance['test_result']['report']['mutation_error_interval'] = (
mutation_confidence_interval
)
return EvalOutput(
instance_id=instance.instance_id, test_result=instance['test_result']
)
except Exception as e:
logger.error(f'Error processing instance {instance.instance_id}: {e}')
raise RuntimeError(
instance.instance_id,
'Unexpected output...',
logger,
)
finally:
runtime.close()
def count_and_log_fields(evaluated_predictions, fields, key):
"""
Count and log the sum of specified fields in the evaluated predictions,
ignoring fields with a value of -1. If all values for a field are -1,
return -1.
:param evaluated_predictions: DataFrame containing evaluation results
:param fields: List of field names to count
:param key: Key to access the field values ('report' or 'lexical')
"""
def count_field(row, field):
value = row['test_result'][key][field]
return (
value if value != -1 else None
) # Ignore -1 fields by treating them as None
for field in fields:
# Extract the valid values for the field, ignoring -1
valid_values = evaluated_predictions.apply(
count_field, args=(field,), axis=1
).dropna()
if valid_values.empty: # If all values are -1
logger.info(f'# {field}: -1 (All values are -1)')
else:
count = valid_values.sum() # Sum of valid values
length = len(valid_values) # Count of valid entries
logger.info(f'# {field}: {length}. ({count / length:.2f})')
if __name__ == '__main__':
parser = get_parser()
parser.add_argument(
'--input-file', type=str, required=True, help='Path to input predictions file'
)
parser.add_argument(
'--dataset',
type=str,
default='kjain14/testgeneval',
help='Dataset to evaluate on',
)
parser.add_argument(
'--split', type=str, default='test', help='Split to evaluate on'
)
parser.add_argument(
'--skip_mutation', action='store_true', help='Skip mutation testing'
)
parser.add_argument(
'--skip_lexical', action='store_true', help='Skip lexical metrics'
)
parser.add_argument(
'--mutation_timeout',
type=int,
default=MUTATION_TIMEOUT,
help='Mutation timeout',
)
parser.add_argument(
'--mutation_buffer',
type=int,
default=MUTATION_BUFFER,
help='Mutation buffer',
)
args, _ = parser.parse_known_args()
dataset: list[TestGenEvalInstance] = load_testgeneval_dataset(
args.dataset, args.split
)
logger.info(
f'Loaded dataset {args.dataset} with split {args.split} to run inference on.'
)
# Load predictions
assert args.input_file.endswith('.jsonl'), 'Input file must be a jsonl file.'
predictions = pd.read_json(args.input_file, lines=True)
assert 'instance_id' in predictions.columns, (
'Input file must contain instance_id column.'
)
if 'test_suite' not in predictions.columns and (
'test_result' in predictions.columns
and 'test_suite' in predictions['test_result'].iloc(0)
):
raise ValueError(
'Input file must contain test_suite column OR test_result column with test_suite field.'
)
if 'instance_id_swebench' not in predictions.columns:
predictions['instance_id_swebench'] = predictions['instance'].apply(
lambda x: x['instance_id_swebench']
)
if 'instance_id' not in predictions.columns and (
'instance_id' in predictions['instance'].iloc(0)
):
raise ValueError(
'Input file must contain id column OR instance column with id field.'
)
if 'instance_id' not in predictions.columns:
predictions['instance_id'] = predictions['instance'].apply(
lambda x: x['instance_id']
)
if 'test_suite' not in predictions.columns:
predictions['test_suite'] = predictions['test_result'].apply(
lambda x: x['test_suite']
)
assert len(predictions['instance_id'].unique()) == len(predictions), (
'instance_id column must be unique.'
)
assert {'instance_id_swebench', 'test_suite', 'instance_id'}.issubset(
set(predictions.columns)
), 'Input file must contain id, instance_id and test_suite columns.'
predictions['test_spec'] = predictions['instance'].apply(
lambda x: make_test_spec(x, args.mutation_timeout, args.mutation_buffer)
)
output_file = args.input_file.replace('.jsonl', '.testgeneval.jsonl')
instances = prepare_dataset(predictions, output_file, args.eval_n_limit)
# If possible, load the relevant metadata to avoid issues with `run_evaluation`.
metadata: EvalMetadata | None = None
metadata_filepath = os.path.join(os.path.dirname(args.input_file), 'metadata.json')
if os.path.exists(metadata_filepath):
with open(metadata_filepath, 'r') as metadata_file:
data = metadata_file.read()
metadata = EvalMetadata.model_validate_json(data)
# The evaluation harness constrains the signature of `process_instance_func` but we need to
# pass extra information. Build a new function object to avoid issues with multiprocessing.
process_instance_func = partial(
process_instance, log_dir=output_file.replace('.jsonl', '.logs')
)
run_evaluation(
instances,
metadata=None,
output_file=output_file,
num_workers=args.eval_num_workers,
process_instance_func=process_instance_func,
)
# Load evaluated predictions & print number of resolved predictions
evaluated_predictions = pd.read_json(output_file, lines=True)
report_fields = [
'coverage',
'mutation_score',
'tests_pass',
'all_tests_pass',
'empty_generation',
'coverage_success',
'test_timeout',
'error_eval',
]
lexical_fields = [
'pred_loc',
'gold_loc',
'pred_methods',
'gold_methods',
'bleu',
'xmatch',
'edit_sim',
'rouge_f',
'rouge_p',
'rouge_r',
]
# Log report and lexical fields
count_and_log_fields(evaluated_predictions, report_fields, key='report')
count_and_log_fields(evaluated_predictions, lexical_fields, key='lexical')
|