File size: 11,824 Bytes
51ff9e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os
import sys
from collections import deque
from typing import TYPE_CHECKING

if TYPE_CHECKING:
    from litellm import ChatCompletionToolParam

    from openhands.events.action import Action
    from openhands.llm.llm import ModelResponse

import openhands.agenthub.codeact_agent.function_calling as codeact_function_calling
from openhands.agenthub.codeact_agent.tools.bash import create_cmd_run_tool
from openhands.agenthub.codeact_agent.tools.browser import BrowserTool
from openhands.agenthub.codeact_agent.tools.finish import FinishTool
from openhands.agenthub.codeact_agent.tools.ipython import IPythonTool
from openhands.agenthub.codeact_agent.tools.llm_based_edit import LLMBasedFileEditTool
from openhands.agenthub.codeact_agent.tools.str_replace_editor import (
    create_str_replace_editor_tool,
)
from openhands.agenthub.codeact_agent.tools.think import ThinkTool
from openhands.controller.agent import Agent
from openhands.controller.state.state import State
from openhands.core.config import AgentConfig
from openhands.core.logger import openhands_logger as logger
from openhands.core.message import Message
from openhands.events.action import AgentFinishAction, MessageAction
from openhands.events.event import Event
from openhands.llm.llm import LLM
from openhands.llm.llm_utils import check_tools
from openhands.memory.condenser import Condenser
from openhands.memory.condenser.condenser import Condensation, View
from openhands.memory.conversation_memory import ConversationMemory
from openhands.runtime.plugins import (
    AgentSkillsRequirement,
    JupyterRequirement,
    PluginRequirement,
)
from openhands.utils.prompt import PromptManager


class CodeActAgent(Agent):
    VERSION = '2.2'
    """
    The Code Act Agent is a minimalist agent.
    The agent works by passing the model a list of action-observation pairs and prompting the model to take the next step.

    ### Overview

    This agent implements the CodeAct idea ([paper](https://arxiv.org/abs/2402.01030), [tweet](https://twitter.com/xingyaow_/status/1754556835703751087)) that consolidates LLM agents' **act**ions into a unified **code** action space for both *simplicity* and *performance* (see paper for more details).

    The conceptual idea is illustrated below. At each turn, the agent can:

    1. **Converse**: Communicate with humans in natural language to ask for clarification, confirmation, etc.
    2. **CodeAct**: Choose to perform the task by executing code
    - Execute any valid Linux `bash` command
    - Execute any valid `Python` code with [an interactive Python interpreter](https://ipython.org/). This is simulated through `bash` command, see plugin system below for more details.

    ![image](https://github.com/All-Hands-AI/OpenHands/assets/38853559/92b622e3-72ad-4a61-8f41-8c040b6d5fb3)

    """

    sandbox_plugins: list[PluginRequirement] = [
        # NOTE: AgentSkillsRequirement need to go before JupyterRequirement, since
        # AgentSkillsRequirement provides a lot of Python functions,
        # and it needs to be initialized before Jupyter for Jupyter to use those functions.
        AgentSkillsRequirement(),
        JupyterRequirement(),
    ]

    def __init__(
        self,
        llm: LLM,
        config: AgentConfig,
    ) -> None:
        """Initializes a new instance of the CodeActAgent class.

        Parameters:
        - llm (LLM): The llm to be used by this agent
        - config (AgentConfig): The configuration for this agent
        """
        super().__init__(llm, config)
        self.pending_actions: deque['Action'] = deque()
        self.reset()
        self.tools = self._get_tools()

        # Create a ConversationMemory instance
        self.conversation_memory = ConversationMemory(self.config, self.prompt_manager)

        self.condenser = Condenser.from_config(self.config.condenser)
        logger.debug(f'Using condenser: {type(self.condenser)}')

    @property
    def prompt_manager(self) -> PromptManager:
        if self._prompt_manager is None:
            self._prompt_manager = PromptManager(
                prompt_dir=os.path.join(os.path.dirname(__file__), 'prompts'),
            )

        return self._prompt_manager

    def _get_tools(self) -> list['ChatCompletionToolParam']:
        # For these models, we use short tool descriptions ( < 1024 tokens)
        # to avoid hitting the OpenAI token limit for tool descriptions.
        SHORT_TOOL_DESCRIPTION_LLM_SUBSTRS = ['gpt-', 'o3', 'o1', 'o4']

        use_short_tool_desc = False
        if self.llm is not None:
            use_short_tool_desc = any(
                model_substr in self.llm.config.model
                for model_substr in SHORT_TOOL_DESCRIPTION_LLM_SUBSTRS
            )

        tools = []
        if self.config.enable_cmd:
            tools.append(create_cmd_run_tool(use_short_description=use_short_tool_desc))
        if self.config.enable_think:
            tools.append(ThinkTool)
        if self.config.enable_finish:
            tools.append(FinishTool)
        if self.config.enable_browsing:
            if sys.platform == 'win32':
                logger.warning('Windows runtime does not support browsing yet')
            else:
                tools.append(BrowserTool)
        if self.config.enable_jupyter:
            tools.append(IPythonTool)
        if self.config.enable_llm_editor:
            tools.append(LLMBasedFileEditTool)
        elif self.config.enable_editor:
            tools.append(
                create_str_replace_editor_tool(
                    use_short_description=use_short_tool_desc
                )
            )
        return tools

    def reset(self) -> None:
        """Resets the CodeAct Agent."""
        super().reset()
        self.pending_actions.clear()

    def step(self, state: State) -> 'Action':
        """Performs one step using the CodeAct Agent.

        This includes gathering info on previous steps and prompting the model to make a command to execute.

        Parameters:
        - state (State): used to get updated info

        Returns:
        - CmdRunAction(command) - bash command to run
        - IPythonRunCellAction(code) - IPython code to run
        - AgentDelegateAction(agent, inputs) - delegate action for (sub)task
        - MessageAction(content) - Message action to run (e.g. ask for clarification)
        - AgentFinishAction() - end the interaction
        """
        # Continue with pending actions if any
        if self.pending_actions:
            return self.pending_actions.popleft()

        # if we're done, go back
        latest_user_message = state.get_last_user_message()
        if latest_user_message and latest_user_message.content.strip() == '/exit':
            return AgentFinishAction()

        # Condense the events from the state. If we get a view we'll pass those
        # to the conversation manager for processing, but if we get a condensation
        # event we'll just return that instead of an action. The controller will
        # immediately ask the agent to step again with the new view.
        condensed_history: list[Event] = []
        match self.condenser.condensed_history(state):
            case View(events=events):
                condensed_history = events

            case Condensation(action=condensation_action):
                return condensation_action

        logger.debug(
            f'Processing {len(condensed_history)} events from a total of {len(state.history)} events'
        )

        initial_user_message = self._get_initial_user_message(state.history)
        messages = self._get_messages(condensed_history, initial_user_message)
        params: dict = {
            'messages': self.llm.format_messages_for_llm(messages),
        }
        params['tools'] = check_tools(self.tools, self.llm.config)
        params['extra_body'] = {'metadata': state.to_llm_metadata(agent_name=self.name)}
        response = self.llm.completion(**params)
        logger.debug(f'Response from LLM: {response}')
        actions = self.response_to_actions(response)
        logger.debug(f'Actions after response_to_actions: {actions}')
        for action in actions:
            self.pending_actions.append(action)
        return self.pending_actions.popleft()

    def _get_initial_user_message(self, history: list[Event]) -> MessageAction:
        """Finds the initial user message action from the full history."""
        initial_user_message: MessageAction | None = None
        for event in history:
            if isinstance(event, MessageAction) and event.source == 'user':
                initial_user_message = event
                break

        if initial_user_message is None:
            # This should not happen in a valid conversation
            logger.error(
                f'CRITICAL: Could not find the initial user MessageAction in the full {len(history)} events history.'
            )
            # Depending on desired robustness, could raise error or create a dummy action
            # and log the error
            raise ValueError(
                'Initial user message not found in history. Please report this issue.'
            )
        return initial_user_message

    def _get_messages(
        self, events: list[Event], initial_user_message: MessageAction
    ) -> list[Message]:
        """Constructs the message history for the LLM conversation.

        This method builds a structured conversation history by processing events from the state
        and formatting them into messages that the LLM can understand. It handles both regular
        message flow and function-calling scenarios.

        The method performs the following steps:
        1. Checks for SystemMessageAction in events, adds one if missing (legacy support)
        2. Processes events (Actions and Observations) into messages, including SystemMessageAction
        3. Handles tool calls and their responses in function-calling mode
        4. Manages message role alternation (user/assistant/tool)
        5. Applies caching for specific LLM providers (e.g., Anthropic)
        6. Adds environment reminders for non-function-calling mode

        Args:
            events: The list of events to convert to messages

        Returns:
            list[Message]: A list of formatted messages ready for LLM consumption, including:
                - System message with prompt (from SystemMessageAction)
                - Action messages (from both user and assistant)
                - Observation messages (including tool responses)
                - Environment reminders (in non-function-calling mode)

        Note:
            - In function-calling mode, tool calls and their responses are carefully tracked
              to maintain proper conversation flow
            - Messages from the same role are combined to prevent consecutive same-role messages
            - For Anthropic models, specific messages are cached according to their documentation
        """
        if not self.prompt_manager:
            raise Exception('Prompt Manager not instantiated.')

        # Use ConversationMemory to process events (including SystemMessageAction)
        messages = self.conversation_memory.process_events(
            condensed_history=events,
            initial_user_action=initial_user_message,
            max_message_chars=self.llm.config.max_message_chars,
            vision_is_active=self.llm.vision_is_active(),
        )

        if self.llm.is_caching_prompt_active():
            self.conversation_memory.apply_prompt_caching(messages)

        return messages

    def response_to_actions(self, response: 'ModelResponse') -> list['Action']:
        return codeact_function_calling.response_to_actions(
            response,
            mcp_tool_names=list(self.mcp_tools.keys()),
        )