Spaces:
Build error
Build error
File size: 9,498 Bytes
51ff9e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import sys
from typing import Callable, Optional, Sequence, TypeVar, Union
import nltk
import numpy as np
from fuzzywuzzy import fuzz
from rouge import Rouge
# increase recursion depth to ensure ROUGE can be calculated for long sentences
if sys.getrecursionlimit() < 10_000:
sys.setrecursionlimit(10_000)
def bleu(gold: list[str], pred: list[str]) -> float:
"""
Calculate BLEU score, using smoothing method 2 with auto reweighting, in the range of 0~100.
:param gold: list of gold tokens
:param pred: list of predicted tokens
:return: BLEU score
"""
if len(pred) == 0 or len(gold) == 0:
return 0.0
return 100.0 * nltk.translate.bleu_score.sentence_bleu(
[gold],
pred,
smoothing_function=nltk.translate.bleu_score.SmoothingFunction().method2,
auto_reweigh=True,
)
def batch_bleu(golds: list[list[str]], preds: list[list[str]]) -> list[float]:
"""
Calculate BLEU score for a batch of sentences.
:param golds: list of gold sentences
:param preds: list of predicted sentences
:return: list of BLEU scores
"""
if len(golds) != len(preds):
raise ValueError('golds and preds must have the same length')
return [bleu(gold, pred) for gold, pred in zip(golds, preds)]
def corpus_bleu(golds: list[list[str]], preds: list[list[str]]) -> float:
"""
Calculate corpus-level BLEU score for a batch of sentences.
:param golds: list of gold sentences
:param preds: list of predicted sentences
:return: corpus-level BLEU score
"""
if len(golds) != len(preds):
raise ValueError('golds and preds must have the same length')
return 100.0 * nltk.translate.bleu_score.corpus_bleu(
[[gold] for gold in golds],
preds,
smoothing_function=nltk.translate.bleu_score.SmoothingFunction().method2,
auto_reweigh=True,
)
def edit_sim(
gold: Union[str, list[str]], pred: Union[str, list[str]], sep: str = ' '
) -> float:
"""
Calculate char-level edit similarity, in the range of 0~100.
:param gold: gold sentence or list of gold tokens
:param pred: predicted sentence or list of predicted tokens
:param sep: separator between tokens
:return: char-level edit similarity
"""
if len(pred) == 0 or len(gold) == 0:
return 0.0
if isinstance(gold, list):
gold = sep.join(gold)
if isinstance(pred, list):
pred = sep.join(pred)
return fuzz.ratio(gold, pred)
def batch_edit_sim(
golds: list[Union[str, list[str]]],
preds: list[Union[str, list[str]]],
sep: str = ' ',
) -> list[float]:
"""
Calculate char-level edit similarity for a batch of sentences.
:param golds: list of gold sentences
:param preds: list of predicted sentences
:param sep: separator between tokens
:return: list of char-level edit similarity
"""
if len(golds) != len(preds):
raise ValueError('golds and preds must have the same length')
return [edit_sim(gold, pred, sep) for gold, pred in zip(golds, preds)]
T = TypeVar('T')
def exact_match(gold: T, pred: T) -> float:
"""
Calculate exact match accuracy, in the range of {0, 100}.
:param gold: gold sentence or list of gold tokens
:param pred: predicted sentence or list of predicted tokens
:return: exact match accuracy
"""
if len(pred) == 0 or len(gold) == 0:
return 0.0
return 100.0 if gold == pred else 0.0
def batch_exact_match(golds: list[T], preds: list[T]) -> list[float]:
"""
Calculate exact match accuracy for a batch of sentences.
:param golds: list of gold sentences
:param preds: list of predicted sentences
:return: list of exact match accuracy
"""
if len(golds) != len(preds):
raise ValueError('golds and preds must have the same length')
return [exact_match(gold, pred) for gold, pred in zip(golds, preds)]
def rouge_l(
gold: Union[str, list[str]], pred: Union[str, list[str]], sep: str = ' '
) -> dict[str, float]:
"""
Calculate ROUGE-L F1, precision, and recall scores, in the range of 0~100.
:param gold: gold sentence or list of gold tokens
:param pred: predicted sentence or list of predicted tokens
:return: {"p": precision, "r": recall, "f": F1}
"""
if len(pred) == 0 or len(gold) == 0:
return {'p': 0.0, 'r': 0.0, 'f': 0.0}
if isinstance(gold, list):
gold = sep.join(gold)
if isinstance(pred, list):
pred = sep.join(pred)
try:
rouge = Rouge()
scores = rouge.get_scores(hyps=pred, refs=gold, avg=True)
return {x: scores['rouge-l'][x] * 100.0 for x in ['p', 'r', 'f']}
except ValueError:
return {'p': 0.0, 'r': 0.0, 'f': 0.0}
def batch_rouge_l(
golds: list[Union[str, list[str]]],
preds: list[Union[str, list[str]]],
sep: str = ' ',
) -> dict[str, list[float]]:
"""
Calculate ROUGE-L F1, precision, and recall scores for a batch of sentences.
:param golds: list of gold sentences
:param preds: list of predicted sentences
:param sep: separator between tokens
:return: list of {"p": precision, "r": recall, "f": F1}
"""
if len(golds) != len(preds):
raise ValueError('golds and preds must have the same length')
scores = [rouge_l(gold, pred, sep) for gold, pred in zip(golds, preds)]
return {x: [score[x] for score in scores] for x in ['p', 'r', 'f']}
def accuracy(
gold: list[str],
pred: list[str],
ignore: Optional[Sequence[str]] = None,
) -> float:
"""
Calculate token-level accuracy, in the range of 0~100.
If gold and pred are not the same length, the longer one would be truncated.
:param gold: list of gold tokens
:param pred: list of predicted tokens
:param ignore: list of (gold) tokens to ignore
:return: accuracy
"""
if len(pred) == 0 or len(gold) == 0:
return 0.0
if ignore is None:
ignore = []
i = 0
total = 0
match = 0
while i < len(gold) and i < len(pred):
if gold[i] in ignore:
i += 1
continue
total += 1
if gold[i] == pred[i]:
match += 1
i += 1
if total == 0:
return 0.0
return 100.0 * match / total
def batch_accuracy(
golds: list[list[str]],
preds: list[list[str]],
ignore: Optional[Sequence[str]] = None,
) -> list[float]:
"""
Calculate token-level accuracy for a batch of sentences.
:param golds: list of gold sentences
:param preds: list of predicted sentences
:param ignore: list of (gold) tokens to ignore
:return: list of accuracy
"""
if len(golds) != len(preds):
raise ValueError('golds and preds must have the same length')
return [accuracy(gold, pred, ignore) for gold, pred in zip(golds, preds)]
def first_match_to_topk(
first_match_list: list[int], k_values: list[int]
) -> dict[int, list[float]]:
"""
Calculate top-k accuracy with the first match ranks (1-indexed).
:param first_match: first match ranks (1-indexed)
:param k_values: k values to consider
:return: a mapping from k to top-k accuracies (ranging from 0~100)
"""
return {k: [100.0 if x <= k else 0.0 for x in first_match_list] for k in k_values}
def pass_at_k(n: int, c: int, k: int) -> float:
"""
Sample pass@k metric according to the Codex paper, but in the scale of 0~100.
:param n: total number of samples
:param c: number of correct samples
:param k: k in pass@$k$
"""
if n < k or (n - c) < k:
# fallback to the (1 - (1-p)^k) formula
return (1 - (1 - (c / n)) ** k) * 100
else:
return (1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1)).item()) * 100
def self_bleu(samples: list[list[str]]) -> float:
"""
Calculate self-BLEU among the samples.
:param samples: the chosen m samples
:return: self-BLEU
"""
if len(samples) == 0:
return 100.0
scores = []
for i in range(len(samples)):
scores.append(
100.0
* nltk.translate.bleu_score.sentence_bleu(
[samples[j] for j in range(len(samples)) if j != i],
samples[i],
smoothing_function=nltk.translate.bleu_score.SmoothingFunction().method2,
auto_reweigh=True,
)
)
return np.mean(scores).item()
def self_edit_distance(samples: list[Union[str, list[str]]], sep=' ') -> float:
"""
Calculate self-edit-distance among the samples.
:param samples: the chosen m samples
:param sep: the separator between tokens
:return: self-edit-distance
"""
if len(samples) == 0:
return 0.0
scores = []
for i in range(len(samples)):
sample_i = samples[i]
if not isinstance(sample_i, str):
sample_i = sep.join(sample_i)
for j in range(len(samples)):
if i == j:
continue
sample_j = samples[j]
if not isinstance(sample_j, str):
sample_j = sep.join(sample_j)
scores.append(100 - fuzz.ratio(sample_i, sample_j))
return np.mean(scores).item()
QUALITY_METRICS: dict[str, Callable[[list[str], list[str]], float]] = {
'bleu': bleu,
'xmatch': exact_match,
'edit-sim': edit_sim,
'rouge-f': lambda g, p: rouge_l(g, p)['f'],
'rouge-p': lambda g, p: rouge_l(g, p)['p'],
'rouge-r': lambda g, p: rouge_l(g, p)['r'],
}
|