File size: 21,037 Bytes
51ff9e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
import asyncio
import json
import os
import tempfile
import time
import traceback
from typing import Any

import numpy as np
import pandas as pd
import toml
from datasets import load_dataset

import openhands.agenthub
from evaluation.benchmarks.testgeneval.constants import MAP_REPO_VERSION_TO_SPECS
from evaluation.benchmarks.testgeneval.prompt import (
    CODEACT_TESTGEN_PROMPT,
    CODEACT_TESTGEN_PROMPT_ITERATE,
)
from evaluation.benchmarks.testgeneval.utils import get_test_directives
from evaluation.utils.shared import (
    EvalException,
    EvalMetadata,
    EvalOutput,
    assert_and_raise,
    codeact_user_response,
    get_metrics,
    is_fatal_evaluation_error,
    make_metadata,
    prepare_dataset,
    reset_logger_for_multiprocessing,
    run_evaluation,
    update_llm_config_for_completions_logging,
)
from openhands.controller.state.state import State
from openhands.core.config import (
    AgentConfig,
    OpenHandsConfig,
    SandboxConfig,
    get_llm_config_arg,
    get_parser,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import CmdRunAction, MessageAction
from openhands.events.observation import CmdOutputObservation, ErrorObservation
from openhands.events.serialization.event import event_to_dict
from openhands.runtime.base import Runtime
from openhands.utils.async_utils import call_async_from_sync

RUN_WITH_BROWSING = os.environ.get('RUN_WITH_BROWSING', 'false').lower() == 'true'

AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
    'CodeActAgent': codeact_user_response,
}


def _preprocess_instance(d):
    for key, value in d.items():
        if isinstance(value, np.ndarray):
            d[key] = value.tolist()
    return d


def _get_swebench_workspace_dir_name(instance: pd.Series) -> str:
    return f'{instance.repo}__{instance.version}'.replace('/', '__')


def get_instruction(instance: pd.Series, metadata: EvalMetadata):
    # workspace_dir_name = _get_swebench_workspace_dir_name(instance)
    # Prepare instruction
    coverage_command = ' '.join(
        [
            MAP_REPO_VERSION_TO_SPECS[instance['repo']][instance['version']][
                'test_cmd'
            ],
            *get_test_directives(instance),
        ]
    )

    # Testing general agents
    prompt_to_use = (
        CODEACT_TESTGEN_PROMPT_ITERATE
        if instance['full_pred'] is not None
        else CODEACT_TESTGEN_PROMPT
    )
    instruction = prompt_to_use.format(
        code_file=os.path.join('/testbed', instance.code_file),
        test_file=os.path.join('/testbed', instance.test_file),
        coverage_command=coverage_command,
        code_src=instance['code_src'],
        imports='\n'.join(instance.local_imports),
        workspace_dir_name=_get_swebench_workspace_dir_name(instance),
    )

    if RUN_WITH_BROWSING:
        instruction += (
            '<IMPORTANT!>\nYou SHOULD NEVER attempt to browse the web. </IMPORTANT!>\n'
        )

    return instruction


# TODO: migrate all swe-bench docker to ghcr.io/openhands
DOCKER_IMAGE_PREFIX = os.environ.get('EVAL_DOCKER_IMAGE_PREFIX', 'docker.io/kdjain/')
logger.info(f'Using docker image prefix: {DOCKER_IMAGE_PREFIX}')


def get_instance_docker_image(instance_id: str) -> str:
    image_name = 'sweb.eval.x86_64.' + instance_id
    image_name = image_name.replace(
        '__', '_s_'
    )  # to comply with docker image naming convention
    return DOCKER_IMAGE_PREFIX.rstrip('/') + '/' + image_name


def get_config(
    instance: pd.Series,
    metadata: EvalMetadata,
) -> OpenHandsConfig:
    # We use a different instance image for the each instance of TestGenEval
    base_container_image = get_instance_docker_image(instance['instance_id_swebench'])
    logger.info(
        f'Using instance container image: {base_container_image}. '
        f'Please make sure this image exists. '
        f'Submit an issue on https://github.com/All-Hands-AI/OpenHands if you run into any issues.'
    )

    config = OpenHandsConfig(
        default_agent=metadata.agent_class,
        run_as_openhands=False,
        max_iterations=metadata.max_iterations,
        runtime=os.environ.get('RUNTIME', 'eventstream'),
        sandbox=SandboxConfig(
            base_container_image=base_container_image,
            enable_auto_lint=True,
            use_host_network=False,
            # large enough timeout, since some testcases take very long to run
            timeout=300,
            # Add platform to the sandbox config to solve issue 4401
            platform='linux/amd64',
            api_key=os.environ.get('ALLHANDS_API_KEY', None),
            remote_runtime_api_url=os.environ.get(
                'SANDBOX_REMOTE_RUNTIME_API_URL', 'http://localhost:8000'
            ),
            keep_runtime_alive=False,
            remote_runtime_init_timeout=3600,
        ),
        # do not mount workspace
        workspace_base=None,
        workspace_mount_path=None,
    )
    config.set_llm_config(
        update_llm_config_for_completions_logging(
            metadata.llm_config, metadata.eval_output_dir, instance['id']
        )
    )
    agent_config = AgentConfig(
        enable_jupyter=False,
        enable_browsing=RUN_WITH_BROWSING,
        enable_llm_editor=False,
        condenser=metadata.condenser_config,
        enable_prompt_extensions=False,
    )
    config.set_agent_config(agent_config)
    return config


def initialize_runtime(
    runtime: Runtime,
    instance: pd.Series,  # this argument is not required
):
    """Initialize the runtime for the agent.

    This function is called before the runtime is used to run the agent.
    """
    logger.info('-' * 30)
    logger.info('BEGIN Runtime Initialization Fn')
    logger.info('-' * 30)
    workspace_dir_name = _get_swebench_workspace_dir_name(instance)
    obs: CmdOutputObservation

    instance['instance_id'] = instance['instance_id_swebench']

    # Set instance id
    action = CmdRunAction(
        command=f"""echo 'export SWE_INSTANCE_ID={instance['instance_id_swebench']}' >> ~/.bashrc && echo 'export PIP_CACHE_DIR=~/.cache/pip' >> ~/.bashrc && echo "alias git='git --no-pager'" >> ~/.bashrc"""
    )
    action.set_hard_timeout(600)
    logger.info(action, extra={'msg_type': 'ACTION'})
    obs = runtime.run_action(action)
    logger.info(obs, extra={'msg_type': 'OBSERVATION'})
    assert_and_raise(
        obs.exit_code == 0, f'Failed to export SWE_INSTANCE_ID: {str(obs)}'
    )

    action = CmdRunAction(command="""export USER=$(whoami); echo USER=${USER} """)
    action.set_hard_timeout(600)
    logger.info(action, extra={'msg_type': 'ACTION'})
    obs = runtime.run_action(action)
    logger.info(obs, extra={'msg_type': 'OBSERVATION'})
    assert_and_raise(obs.exit_code == 0, f'Failed to export USER: {str(obs)}')

    # inject the init script
    script_dir = os.path.dirname(__file__)

    # inject the instance info
    action = CmdRunAction(command='mkdir -p /swe_util/eval_data/instances')
    action.set_hard_timeout(600)
    logger.info(action, extra={'msg_type': 'ACTION'})
    obs = runtime.run_action(action)
    logger.info(obs, extra={'msg_type': 'OBSERVATION'})
    assert_and_raise(
        obs.exit_code == 0,
        f'Failed to create /swe_util/eval_data/instances: {str(obs)}',
    )

    swe_instance_json_name = 'swe-bench-instance.json'
    swe_prediction = 'test_suite.py'
    with tempfile.TemporaryDirectory() as temp_dir:
        # Construct the full path for the desired file name within the temporary directory
        temp_file_path = os.path.join(temp_dir, swe_instance_json_name)
        # Write to the file with the desired name within the temporary directory
        with open(temp_file_path, 'w') as f:
            if not isinstance(instance, dict):
                preprocessed_instance = _preprocess_instance(instance.to_dict())
                json.dump([preprocessed_instance], f)
            else:
                preprocessed_instance = _preprocess_instance(instance)
                json.dump([preprocessed_instance], f)

        # Copy the file to the desired location
        runtime.copy_to(temp_file_path, '/swe_util/eval_data/instances/')

        if instance['full_pred'] is not None:
            temp_file_path_pred = os.path.join(temp_dir, swe_prediction)
            with open(temp_file_path_pred, 'w') as f:
                f.write(instance['full_pred'])

            runtime.copy_to(temp_file_path_pred, '/tmp')

            # Copy the file to the desired location
            action = CmdRunAction(
                command=f'cp /tmp/test_suite.py /testbed/{instance["test_file"]}'
            )
            action.set_hard_timeout(600)
            logger.info(action, extra={'msg_type': 'ACTION'})
            obs = runtime.run_action(action)
            logger.info(obs, extra={'msg_type': 'OBSERVATION'})
            assert_and_raise(
                obs.exit_code == 0, f'Failed to copy test file: {str(obs)}'
            )

            action = CmdRunAction(
                command='git -C /testbed add . && git -C /testbed commit -m "Add test file"'
            )
            action.set_hard_timeout(600)
            logger.info(action, extra={'msg_type': 'ACTION'})
            obs = runtime.run_action(action)
            logger.info(obs, extra={'msg_type': 'OBSERVATION'})
            assert_and_raise(obs.exit_code == 0, f'Failed to cat ~/.bashrc: {str(obs)}')

    # inject the instance swe entry
    runtime.copy_to(
        str(os.path.join(script_dir, 'scripts/setup/instance_swe_entry.sh')),
        '/swe_util/',
    )
    action = CmdRunAction(command='cat ~/.bashrc')
    action.set_hard_timeout(600)
    logger.info(action, extra={'msg_type': 'ACTION'})
    obs = runtime.run_action(action)
    logger.info(obs, extra={'msg_type': 'OBSERVATION'})
    assert_and_raise(obs.exit_code == 0, f'Failed to cat ~/.bashrc: {str(obs)}')

    action = CmdRunAction(command='source ~/.bashrc')
    action.set_hard_timeout(600)
    logger.info(action, extra={'msg_type': 'ACTION'})
    obs = runtime.run_action(action)
    logger.info(obs, extra={'msg_type': 'OBSERVATION'})
    if isinstance(obs, ErrorObservation):
        logger.error(f'Failed to source ~/.bashrc: {str(obs)}')
    assert_and_raise(obs.exit_code == 0, f'Failed to source ~/.bashrc: {str(obs)}')

    action = CmdRunAction(command='source /swe_util/instance_swe_entry.sh')
    action.set_hard_timeout(600)
    logger.info(action, extra={'msg_type': 'ACTION'})
    obs = runtime.run_action(action)
    logger.info(obs, extra={'msg_type': 'OBSERVATION'})
    assert_and_raise(
        obs.exit_code == 0,
        f'Failed to source /swe_util/instance_swe_entry.sh: {str(obs)}',
    )

    action = CmdRunAction(command=f'cd /workspace/{workspace_dir_name}')
    action.set_hard_timeout(600)
    logger.info(action, extra={'msg_type': 'ACTION'})
    obs = runtime.run_action(action)
    logger.info(obs, extra={'msg_type': 'OBSERVATION'})
    assert_and_raise(
        obs.exit_code == 0,
        f'Failed to cd to /workspace/{workspace_dir_name}: {str(obs)}',
    )

    action = CmdRunAction(command='git reset --hard')
    action.set_hard_timeout(600)
    logger.info(action, extra={'msg_type': 'ACTION'})
    obs = runtime.run_action(action)
    logger.info(obs, extra={'msg_type': 'OBSERVATION'})
    assert_and_raise(obs.exit_code == 0, f'Failed to git reset --hard: {str(obs)}')

    action = CmdRunAction(
        command='for remote_name in $(git remote); do git remote remove "${remote_name}"; done'
    )
    action.set_hard_timeout(600)
    logger.info(action, extra={'msg_type': 'ACTION'})
    obs = runtime.run_action(action)
    logger.info(obs, extra={'msg_type': 'OBSERVATION'})
    assert_and_raise(obs.exit_code == 0, f'Failed to remove git remotes: {str(obs)}')

    logger.info('-' * 30)
    logger.info('END Runtime Initialization Fn')
    logger.info('-' * 30)


def complete_runtime(
    runtime: Runtime,
    instance: pd.Series,  # this argument is not required, but it is used to get the workspace_dir_name
) -> dict[str, Any]:
    """Complete the runtime for the agent.

    This function is called before the runtime is used to run the agent.
    If you need to do something in the sandbox to get the correctness metric after
    the agent has run, modify this function.
    """
    try:
        logger.info('-' * 30)
        logger.info('BEGIN Runtime Completion Fn')
        logger.info('-' * 30)
        obs: CmdOutputObservation
        workspace_dir_name = _get_swebench_workspace_dir_name(instance)

        action = CmdRunAction(command=f'cd /workspace/{workspace_dir_name}')
        action.set_hard_timeout(600)
        logger.info(action, extra={'msg_type': 'ACTION'})
        obs = runtime.run_action(action)
        logger.info(obs, extra={'msg_type': 'OBSERVATION'})
        assert_and_raise(
            obs.exit_code == 0,
            f'Failed to cd to /workspace/{workspace_dir_name}: {str(obs)}',
        )

        action = CmdRunAction(command=f'cat {instance.test_file}')
        action.set_hard_timeout(600)
        logger.info(action, extra={'msg_type': 'ACTION'})
        obs = runtime.run_action(action)
        logger.info(obs, extra={'msg_type': 'OBSERVATION'})
        assert_and_raise(
            obs.exit_code == 0,
            f'Failed to find file: {instance.test_file} in /workspace/{workspace_dir_name}',
        )

        test_suite = obs.content.strip()
    except Exception:
        # Print stack trace
        print('Skipping, exception in complete_runtime')
        print(traceback.format_exc())
        test_suite = instance['full_pred'] if instance['full_pred'] is not None else ''

    # action = CmdRunAction(command='git add -A')
    # action.set_hard_timeout(600)
    # logger.info(action, extra={'msg_type': 'ACTION'})
    # obs = runtime.run_action(action)
    # logger.info(obs, extra={'msg_type': 'OBSERVATION'})
    # assert_and_raise(obs.exit_code == 0, f'Failed to git add -A: {str(obs)}')

    logger.info('-' * 30)
    logger.info('END Runtime Completion Fn')
    logger.info('-' * 30)
    return {
        'test_suite': test_suite,
    }


def process_instance(
    instance: pd.Series,
    metadata: EvalMetadata,
    reset_logger: bool = True,
) -> EvalOutput:
    config = get_config(instance, metadata)
    start_time = time.time()  # Track start time

    # Setup the logger properly, so you can run multi-processing to parallelize the evaluation
    if reset_logger:
        log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
        reset_logger_for_multiprocessing(logger, instance.id, log_dir)
    else:
        logger.info(f'Starting evaluation for instance {instance.id}.')

    runtime = create_runtime(config)
    call_async_from_sync(runtime.connect)

    try:
        initialize_runtime(runtime, instance)

        instruction = get_instruction(instance, metadata)

        # Here's how you can run the agent (similar to the `main` function) and get the final task state
        state: State | None = asyncio.run(
            run_controller(
                config=config,
                initial_user_action=MessageAction(content=instruction),
                runtime=runtime,
                fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
                    metadata.agent_class
                ],
            )
        )

        # if fatal error, throw EvalError to trigger re-run
        if is_fatal_evaluation_error(state.last_error):
            raise EvalException('Fatal error detected: ' + state.last_error)

        # ======= THIS IS SWE-Bench specific =======
        return_val = complete_runtime(runtime, instance)
        test_suite = return_val['test_suite']
        logger.info(
            f'Got test suite for instance {instance.instance_id}:\n--------\n{test_suite}\n--------'
        )
    finally:
        runtime.close()

    end_time = time.time()
    elapsed_time = end_time - start_time
    logger.info(
        f'Evaluation for instance {instance.instance_id} took {elapsed_time:.2f} seconds.'
    )

    # ==========================================

    # ======= Attempt to evaluate the agent's edits =======
    # we use eval_infer.sh to evaluate the agent's edits, not here
    # because the agent may alter the environment / testcases
    test_result = {
        'test_suite': test_suite,
        'elapsed_time': elapsed_time,
    }

    # If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
    # You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
    if state is None:
        raise ValueError('State should not be None.')

    histories = [event_to_dict(event) for event in state.history]
    metrics = get_metrics(state)

    # Save the output
    output = EvalOutput(
        instance_id=instance.id,
        instruction=instruction,
        instance=_preprocess_instance(instance.to_dict()),  # SWE Bench specific
        test_result=test_result,
        metadata=metadata,
        history=histories,
        metrics=metrics,
        error=state.last_error if state and state.last_error else None,
    )
    # print(output)
    return output


def prepare_dataset_pre(dataset: pd.DataFrame, filter_column: str) -> pd.DataFrame:
    file_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'config.toml')
    if os.path.exists(file_path):
        with open(file_path, 'r') as file:
            data = toml.load(file)
            if 'selected_ids' in data:
                selected_ids = data['selected_ids']
                logger.info(
                    f'Filtering {len(selected_ids)} tasks from "selected_ids"...'
                )
                subset = dataset[dataset[filter_column].isin(selected_ids)]
                logger.info(f'Retained {subset.shape[0]} tasks after filtering')

                subset['instance_id_swebench'] = subset['instance_id']
                subset['instance_id'] = subset['id']
                return subset

    dataset['instance_id_swebench'] = dataset['instance_id']
    dataset['instance_id'] = dataset['id']
    return dataset


if __name__ == '__main__':
    parser = get_parser()
    parser.add_argument(
        '--dataset',
        type=str,
        default='kjain/testgenevallite',
        help='data set to evaluate on, either full-test or lite-test',
    )
    parser.add_argument(
        '--split',
        type=str,
        default='test',
        help='split to evaluate on',
    )
    parser.add_argument(
        '--testfile_start',
        action='store_true',
        help='Whether to start from the 0 shot test file',
    )

    parser.add_argument(
        '--zero_shot_path',
        type=str,
        help='Path to the zero shot test file predictions',
    )
    args, _ = parser.parse_known_args()

    if args.testfile_start and not args.zero_shot_path:
        raise ValueError(
            'If you want to start from the 0 shot test file, you must provide the path to the zero shot test file predictions'
        )

    preds_map = {}
    if args.testfile_start:
        with open(args.zero_shot_path, 'r') as f:
            for line in f:
                pred = json.loads(line)
                preds_map[pred['id']] = pred['preds']['full'][0]

    # NOTE: It is preferable to load datasets from huggingface datasets and perform post-processing
    # so we don't need to manage file uploading to OpenHands's repo
    dataset = load_dataset(args.dataset, split=args.split)
    logger.info(f'Loaded dataset {args.dataset} with split {args.split}')
    testgeneval_filepairs = prepare_dataset_pre(dataset.to_pandas(), 'id')

    llm_config = None
    if args.llm_config:
        llm_config = get_llm_config_arg(args.llm_config)
        llm_config.log_completions = True
        # modify_params must be False for evaluation purpose, for reproducibility and accurancy of results
        llm_config.modify_params = False

    if llm_config is None:
        raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')

    details = {}
    _agent_cls = openhands.agenthub.Agent.get_cls(args.agent_cls)

    dataset_descrption = (
        args.dataset.replace('/', '__') + '-' + args.split.replace('/', '__')
    )
    metadata = make_metadata(
        llm_config,
        dataset_descrption,
        args.agent_cls,
        args.max_iterations,
        args.eval_note,
        args.eval_output_dir,
        details=details,
    )

    output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
    instances = prepare_dataset(testgeneval_filepairs, output_file, args.eval_n_limit)

    if not instances.empty:
        instances['full_pred'] = (
            instances['instance_id']
            .map(preds_map)
            .apply(lambda x: x if pd.notna(x) else None)
        )

        run_evaluation(
            instances, metadata, output_file, args.eval_num_workers, process_instance
        )