File size: 5,872 Bytes
51ff9e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from dataclasses import asdict
from datetime import datetime
from enum import Enum
from typing import Any

from pydantic import BaseModel

from openhands.events import Event, EventSource
from openhands.events.serialization.action import action_from_dict
from openhands.events.serialization.observation import observation_from_dict
from openhands.events.serialization.utils import remove_fields
from openhands.events.tool import ToolCallMetadata
from openhands.llm.metrics import Cost, Metrics, ResponseLatency, TokenUsage

# TODO: move `content` into `extras`
TOP_KEYS = [
    'id',
    'timestamp',
    'source',
    'message',
    'cause',
    'action',
    'observation',
    'tool_call_metadata',
    'llm_metrics',
]
UNDERSCORE_KEYS = [
    'id',
    'timestamp',
    'source',
    'cause',
    'tool_call_metadata',
    'llm_metrics',
]

DELETE_FROM_TRAJECTORY_EXTRAS = {
    'dom_object',
    'axtree_object',
    'active_page_index',
    'last_browser_action',
    'last_browser_action_error',
    'focused_element_bid',
    'extra_element_properties',
}

DELETE_FROM_TRAJECTORY_EXTRAS_AND_SCREENSHOTS = DELETE_FROM_TRAJECTORY_EXTRAS | {
    'screenshot',
    'set_of_marks',
}


def event_from_dict(data: dict[str, Any]) -> 'Event':
    evt: Event
    if 'action' in data:
        evt = action_from_dict(data)
    elif 'observation' in data:
        evt = observation_from_dict(data)
    else:
        raise ValueError(f'Unknown event type: {data}')
    for key in UNDERSCORE_KEYS:
        if key in data:
            value = data[key]
            if key == 'timestamp' and isinstance(value, datetime):
                value = value.isoformat()
            if key == 'source':
                value = EventSource(value)
            if key == 'tool_call_metadata':
                value = ToolCallMetadata(**value)
            if key == 'llm_metrics':
                metrics = Metrics()
                if isinstance(value, dict):
                    metrics.accumulated_cost = value.get('accumulated_cost', 0.0)
                    for cost in value.get('costs', []):
                        metrics._costs.append(Cost(**cost))
                    metrics.response_latencies = [
                        ResponseLatency(**latency)
                        for latency in value.get('response_latencies', [])
                    ]
                    metrics.token_usages = [
                        TokenUsage(**usage) for usage in value.get('token_usages', [])
                    ]
                    # Set accumulated token usage if available
                    if 'accumulated_token_usage' in value:
                        metrics._accumulated_token_usage = TokenUsage(
                            **value.get('accumulated_token_usage', {})
                        )
                value = metrics
            setattr(evt, '_' + key, value)
    return evt


def _convert_pydantic_to_dict(obj: BaseModel | dict) -> dict:
    if isinstance(obj, BaseModel):
        return obj.model_dump()
    return obj


def event_to_dict(event: 'Event') -> dict:
    props = asdict(event)
    d = {}
    for key in TOP_KEYS:
        if hasattr(event, key) and getattr(event, key) is not None:
            d[key] = getattr(event, key)
        elif hasattr(event, f'_{key}') and getattr(event, f'_{key}') is not None:
            d[key] = getattr(event, f'_{key}')
        if key == 'id' and d.get('id') == -1:
            d.pop('id', None)
        if key == 'timestamp' and 'timestamp' in d:
            if isinstance(d['timestamp'], datetime):
                d['timestamp'] = d['timestamp'].isoformat()
        if key == 'source' and 'source' in d:
            d['source'] = d['source'].value
        if key == 'recall_type' and 'recall_type' in d:
            d['recall_type'] = d['recall_type'].value
        if key == 'tool_call_metadata' and 'tool_call_metadata' in d:
            d['tool_call_metadata'] = d['tool_call_metadata'].model_dump()
        if key == 'llm_metrics' and 'llm_metrics' in d:
            d['llm_metrics'] = d['llm_metrics'].get()
        props.pop(key, None)
    if 'security_risk' in props and props['security_risk'] is None:
        props.pop('security_risk')
    if 'action' in d:
        d['args'] = props
        if event.timeout is not None:
            d['timeout'] = event.timeout
    elif 'observation' in d:
        d['content'] = props.pop('content', '')

        # props is a dict whose values can include a complex object like an instance of a BaseModel subclass
        # such as CmdOutputMetadata
        # we serialize it along with the rest
        # we also handle the Enum conversion for RecallObservation
        d['extras'] = {
            k: (v.value if isinstance(v, Enum) else _convert_pydantic_to_dict(v))
            for k, v in props.items()
        }
        # Include success field for CmdOutputObservation
        if hasattr(event, 'success'):
            d['success'] = event.success
    else:
        raise ValueError(f'Event must be either action or observation. has: {event}')
    return d


def event_to_trajectory(event: 'Event', include_screenshots: bool = False) -> dict:
    d = event_to_dict(event)
    if 'extras' in d:
        remove_fields(
            d['extras'],
            DELETE_FROM_TRAJECTORY_EXTRAS
            if include_screenshots
            else DELETE_FROM_TRAJECTORY_EXTRAS_AND_SCREENSHOTS,
        )
    return d


def truncate_content(content: str, max_chars: int | None = None) -> str:
    """Truncate the middle of the observation content if it is too long."""
    if max_chars is None or len(content) <= max_chars or max_chars < 0:
        return content

    # truncate the middle and include a message to the LLM about it
    half = max_chars // 2
    return (
        content[:half]
        + '\n[... Observation truncated due to length ...]\n'
        + content[-half:]
    )