Spaces:
Build error
Build error
File size: 12,642 Bytes
51ff9e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
from __future__ import annotations
import json
from typing import Any
from pydantic import BaseModel, Field
from openhands.core.config.condenser_config import (
StructuredSummaryCondenserConfig,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.message import Message, TextContent
from openhands.events.action.agent import CondensationAction
from openhands.events.observation.agent import AgentCondensationObservation
from openhands.events.serialization.event import truncate_content
from openhands.llm import LLM
from openhands.memory.condenser.condenser import (
Condensation,
RollingCondenser,
View,
)
class StateSummary(BaseModel):
"""A structured representation summarizing the state of the agent and the task."""
# Required core fields
user_context: str = Field(
default='',
description='Essential user requirements, goals, and clarifications in concise form.',
)
completed_tasks: str = Field(
default='', description='List of tasks completed so far with brief results.'
)
pending_tasks: str = Field(
default='', description='List of tasks that still need to be done.'
)
current_state: str = Field(
default='',
description='Current variables, data structures, or other relevant state information.',
)
# Code state fields
files_modified: str = Field(
default='', description='List of files that have been created or modified.'
)
function_changes: str = Field(
default='', description='List of functions that have been created or modified.'
)
data_structures: str = Field(
default='', description='List of key data structures in use or modified.'
)
# Test status fields
tests_written: str = Field(
default='',
description='Whether tests have been written for the changes. True, false, or unknown.',
)
tests_passing: str = Field(
default='',
description='Whether all tests are currently passing. True, false, or unknown.',
)
failing_tests: str = Field(
default='', description='List of names or descriptions of any failing tests.'
)
error_messages: str = Field(
default='', description='List of key error messages encountered.'
)
# Version control fields
branch_created: str = Field(
default='',
description='Whether a branch has been created for this work. True, false, or unknown.',
)
branch_name: str = Field(
default='', description='Name of the current working branch if known.'
)
commits_made: str = Field(
default='',
description='Whether any commits have been made. True, false, or unknown.',
)
pr_created: str = Field(
default='',
description='Whether a pull request has been created. True, false, or unknown.',
)
pr_status: str = Field(
default='',
description="Status of any pull request: 'draft', 'open', 'merged', 'closed', or 'unknown'.",
)
# Other fields
dependencies: str = Field(
default='',
description='List of dependencies or imports that have been added or modified.',
)
other_relevant_context: str = Field(
default='',
description="Any other important information that doesn't fit into the categories above.",
)
@classmethod
def tool_description(cls) -> dict[str, Any]:
"""Description of a tool whose arguments are the fields of this class.
Can be given to an LLM to force structured generation.
"""
properties = {}
# Build properties dictionary from field information
for field_name, field in cls.model_fields.items():
description = field.description or ''
properties[field_name] = {'type': 'string', 'description': description}
return {
'type': 'function',
'function': {
'name': 'create_state_summary',
'description': 'Creates a comprehensive summary of the current state of the interaction to preserve context when history grows too large. You must include non-empty values for user_context, completed_tasks, and pending_tasks.',
'parameters': {
'type': 'object',
'properties': properties,
'required': ['user_context', 'completed_tasks', 'pending_tasks'],
},
},
}
def __str__(self) -> str:
"""Format the state summary in a clear way for Claude 3.7 Sonnet."""
sections = [
'# State Summary',
'## Core Information',
f'**User Context**: {self.user_context}',
f'**Completed Tasks**: {self.completed_tasks}',
f'**Pending Tasks**: {self.pending_tasks}',
f'**Current State**: {self.current_state}',
'## Code Changes',
f'**Files Modified**: {self.files_modified}',
f'**Function Changes**: {self.function_changes}',
f'**Data Structures**: {self.data_structures}',
f'**Dependencies**: {self.dependencies}',
'## Testing Status',
f'**Tests Written**: {self.tests_written}',
f'**Tests Passing**: {self.tests_passing}',
f'**Failing Tests**: {self.failing_tests}',
f'**Error Messages**: {self.error_messages}',
'## Version Control',
f'**Branch Created**: {self.branch_created}',
f'**Branch Name**: {self.branch_name}',
f'**Commits Made**: {self.commits_made}',
f'**PR Created**: {self.pr_created}',
f'**PR Status**: {self.pr_status}',
'## Additional Context',
f'**Other Relevant Context**: {self.other_relevant_context}',
]
# Join all sections with double newlines
return '\n\n'.join(sections)
class StructuredSummaryCondenser(RollingCondenser):
"""A condenser that summarizes forgotten events.
Maintains a condensed history and forgets old events when it grows too large. Uses structured generation via function-calling to produce summaries that replace forgotten events.
"""
def __init__(
self,
llm: LLM,
max_size: int = 100,
keep_first: int = 1,
max_event_length: int = 10_000,
):
if keep_first >= max_size // 2:
raise ValueError(
f'keep_first ({keep_first}) must be less than half of max_size ({max_size})'
)
if keep_first < 0:
raise ValueError(f'keep_first ({keep_first}) cannot be negative')
if max_size < 1:
raise ValueError(f'max_size ({max_size}) cannot be non-positive')
if not llm.is_function_calling_active():
raise ValueError(
'LLM must support function calling to use StructuredSummaryCondenser'
)
self.max_size = max_size
self.keep_first = keep_first
self.max_event_length = max_event_length
self.llm = llm
super().__init__()
def _truncate(self, content: str) -> str:
"""Truncate the content to fit within the specified maximum event length."""
return truncate_content(content, max_chars=self.max_event_length)
def get_condensation(self, view: View) -> Condensation:
head = view[: self.keep_first]
target_size = self.max_size // 2
# Number of events to keep from the tail -- target size, minus however many
# prefix events from the head, minus one for the summarization event
events_from_tail = target_size - len(head) - 1
summary_event = (
view[self.keep_first]
if isinstance(view[self.keep_first], AgentCondensationObservation)
else AgentCondensationObservation('No events summarized')
)
# Identify events to be forgotten (those not in head or tail)
forgotten_events = []
for event in view[self.keep_first : -events_from_tail]:
if not isinstance(event, AgentCondensationObservation):
forgotten_events.append(event)
# Construct prompt for summarization
prompt = """You are maintaining a context-aware state summary for an interactive software agent. This summary is critical because it:
1. Preserves essential context when conversation history grows too large
2. Prevents lost work when the session length exceeds token limits
3. Helps maintain continuity across multiple interactions
You will be given:
- A list of events (actions taken by the agent)
- The most recent previous summary (if one exists)
Capture all relevant information, especially:
- User requirements that were explicitly stated
- Work that has been completed
- Tasks that remain pending
- Current state of code, variables, and data structures
- The status of any version control operations"""
prompt += '\n\n'
# Add the previous summary if it exists. We'll always have a summary
# event, but the types aren't precise enought to guarantee that it has a
# message attribute.
summary_event_content = self._truncate(
summary_event.message if summary_event.message else ''
)
prompt += f'<PREVIOUS SUMMARY>\n{summary_event_content}\n</PREVIOUS SUMMARY>\n'
prompt += '\n\n'
# Add all events that are being forgotten. We use the string
# representation defined by the event, and truncate it if necessary.
for forgotten_event in forgotten_events:
event_content = self._truncate(str(forgotten_event))
prompt += f'<EVENT id={forgotten_event.id}>\n{event_content}\n</EVENT>\n'
messages = [Message(role='user', content=[TextContent(text=prompt)])]
response = self.llm.completion(
messages=self.llm.format_messages_for_llm(messages),
tools=[StateSummary.tool_description()],
tool_choice={
'type': 'function',
'function': {'name': 'create_state_summary'},
},
)
try:
# Extract the message containing tool calls
message = response.choices[0].message
# Check if there are tool calls
if not hasattr(message, 'tool_calls') or not message.tool_calls:
raise ValueError('No tool calls found in response')
# Find the create_state_summary tool call
summary_tool_call = None
for tool_call in message.tool_calls:
if tool_call.function.name == 'create_state_summary':
summary_tool_call = tool_call
break
if not summary_tool_call:
raise ValueError('create_state_summary tool call not found')
# Parse the arguments
args_json = summary_tool_call.function.arguments
args_dict = json.loads(args_json)
# Create a StateSummary object
summary = StateSummary.model_validate(args_dict)
except (ValueError, AttributeError, KeyError, json.JSONDecodeError) as e:
logger.warning(
f'Failed to parse summary tool call: {e}. Using empty summary.'
)
summary = StateSummary()
self.add_metadata('response', response.model_dump())
self.add_metadata('metrics', self.llm.metrics.get())
return Condensation(
action=CondensationAction(
forgotten_events_start_id=min(event.id for event in forgotten_events),
forgotten_events_end_id=max(event.id for event in forgotten_events),
summary=str(summary),
summary_offset=self.keep_first,
)
)
def should_condense(self, view: View) -> bool:
return len(view) > self.max_size
@classmethod
def from_config(
cls, config: StructuredSummaryCondenserConfig
) -> StructuredSummaryCondenser:
# This condenser cannot take advantage of prompt caching. If it happens
# to be set, we'll pay for the cache writes but never get a chance to
# save on a read.
llm_config = config.llm_config.model_copy()
llm_config.caching_prompt = False
return StructuredSummaryCondenser(
llm=LLM(config=llm_config),
max_size=config.max_size,
keep_first=config.keep_first,
max_event_length=config.max_event_length,
)
StructuredSummaryCondenser.register_config(StructuredSummaryCondenserConfig)
|