Spaces:
Build error
Build error
import asyncio | |
import os | |
import re | |
import tempfile | |
from typing import Any | |
import pandas as pd | |
from datasets import load_dataset | |
from evaluation.benchmarks.agent_bench.helper import ( | |
FAKE_RESPONSES, | |
INST_SUFFIXES, | |
compare_results, | |
create_sh_file, | |
) | |
from evaluation.utils.shared import ( | |
EvalMetadata, | |
EvalOutput, | |
compatibility_for_eval_history_pairs, | |
get_default_sandbox_config_for_eval, | |
make_metadata, | |
prepare_dataset, | |
reset_logger_for_multiprocessing, | |
run_evaluation, | |
) | |
from openhands.controller.state.state import State | |
from openhands.core.config import ( | |
OpenHandsConfig, | |
get_llm_config_arg, | |
parse_arguments, | |
) | |
from openhands.core.logger import openhands_logger as logger | |
from openhands.core.main import create_runtime, run_controller | |
from openhands.events.action import AgentFinishAction, CmdRunAction, MessageAction | |
from openhands.events.observation import CmdOutputObservation | |
from openhands.runtime.base import Runtime | |
from openhands.utils.async_utils import call_async_from_sync | |
def get_config( | |
metadata: EvalMetadata, | |
) -> OpenHandsConfig: | |
sandbox_config = get_default_sandbox_config_for_eval() | |
sandbox_config.base_container_image = 'python:3.12-slim' | |
config = OpenHandsConfig( | |
default_agent=metadata.agent_class, | |
run_as_openhands=False, | |
runtime=os.environ.get('RUNTIME', 'docker'), | |
max_iterations=metadata.max_iterations, | |
sandbox=sandbox_config, | |
# do not mount workspace | |
workspace_base=None, | |
workspace_mount_path=None, | |
) | |
config.set_llm_config(metadata.llm_config) | |
agent_config = config.get_agent_config(metadata.agent_class) | |
agent_config.enable_prompt_extensions = False | |
return config | |
def initialize_runtime( | |
runtime: Runtime, | |
instance: pd.Series, # this argument is not required | |
): | |
"""Initialize the runtime for the agent. | |
This function is called before the runtime is used to run the agent. | |
""" | |
logger.info(f'{"-" * 50} BEGIN Runtime Initialization Fn {"-" * 50}') | |
obs: CmdOutputObservation | |
# Set instance id | |
action = CmdRunAction(command='mkdir -p /workspace') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
assert obs.exit_code == 0 | |
action = CmdRunAction(command='cd /workspace') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
assert obs.exit_code == 0 | |
init_cmd = instance.init | |
if init_cmd is not None: | |
script_name = f'{instance.instance_id}_init.sh' | |
with tempfile.TemporaryDirectory() as tmpdir: | |
host_script_path = os.path.join(tmpdir, script_name) | |
create_sh_file(host_script_path, init_cmd) | |
runtime.copy_to( | |
host_script_path, | |
'/workspace', | |
) | |
logger.info(f'Running init script: {script_name}') | |
action = CmdRunAction(command=f'chmod +x ./{script_name} && ./{script_name}') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
logger.info(obs, extra={'msg_type': 'OBSERVATION'}) | |
assert obs.exit_code == 0 | |
logger.info(f'{"-" * 50} END Runtime Initialization Fn {"-" * 50}') | |
def complete_runtime( | |
runtime: Runtime, | |
instance: pd.Series, # this argument is not required, but it is used to get the workspace_dir_name | |
) -> dict[str, Any]: | |
"""Complete the runtime for the agent. | |
This function is called before the runtime is used to run the agent. | |
If you need to do something in the sandbox to get the correctness metric after | |
the agent has run, modify this function. | |
""" | |
logger.info(f'{"-" * 50} BEGIN Runtime Completion Fn {"-" * 50}') | |
obs: CmdOutputObservation | |
agent_answer = None | |
get_agent_result_cmd = instance.get_agent_result | |
if get_agent_result_cmd is not None: | |
script_name = 'get_agent_result.sh' | |
with tempfile.TemporaryDirectory() as tmpdir: | |
host_script_path = os.path.join(tmpdir, script_name) | |
create_sh_file(host_script_path, get_agent_result_cmd) | |
runtime.copy_to( | |
host_script_path, | |
'/workspace', | |
) | |
logger.info(f'Running get agent result cmd: {script_name}') | |
action = CmdRunAction( | |
command=f'chmod +x ./{script_name} && ./{script_name}', | |
) | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
logger.info(obs, extra={'msg_type': 'OBSERVATION'}) | |
assert obs.exit_code == 0 | |
agent_answer = obs.content | |
# IF the agent answer is not found, retrieve it from the history | |
# We wait until the controller finishes | |
final_ans = None | |
if instance.ground_truth is not None: | |
final_ans = instance.ground_truth | |
else: | |
get_ground_truth_cmd = instance.get_ground_truth | |
if get_ground_truth_cmd is not None: | |
script_name = 'get_ground_truth.sh' | |
with tempfile.TemporaryDirectory() as tmpdir: | |
host_script_path = os.path.join(tmpdir, script_name) | |
create_sh_file(host_script_path, get_ground_truth_cmd) | |
runtime.copy_to( | |
host_script_path, | |
'/workspace', | |
) | |
logger.info(f'Running get ground truth cmd: {script_name}') | |
action = CmdRunAction( | |
command=f'chmod +x ./{script_name} && ./{script_name}' | |
) | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
logger.info(obs, extra={'msg_type': 'OBSERVATION'}) | |
final_ans = obs.content | |
logger.info(f'{"-" * 50} END Runtime Completion Fn {"-" * 50}') | |
return { | |
'final_ans': final_ans, | |
'agent_answer': agent_answer, | |
} | |
def process_instance( | |
instance: pd.Series, | |
metadata: EvalMetadata, | |
reset_logger: bool = True, | |
) -> EvalOutput: | |
config = get_config(metadata) | |
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation | |
if reset_logger: | |
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs') | |
reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir) | |
else: | |
logger.info(f'Starting evaluation for instance {instance.instance_id}.') | |
# ============================================= | |
# build instruction | |
# ============================================= | |
# Prepare instruction | |
instruction = ( | |
f'Please fix the following issue.\n' | |
'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n' | |
'Please encapsulate your final answer (answer ONLY) within <solution> and </solution>.\n' | |
'For example: The answer to the question is <solution> 42 </solution>.\n' | |
'# Problem \n' | |
f'{instance.description}\n\n' | |
) | |
instruction += ( | |
'IMPORTANT: You should ONLY interact with the environment provided ' | |
'to you AND NEVER ASK FOR HUMAN HELP.\n' | |
) | |
# NOTE: You can actually set slightly different instruction for different agents | |
instruction += INST_SUFFIXES[metadata.agent_class] | |
# ============================================= | |
# create sandbox and run the agent | |
# ============================================= | |
runtime: Runtime = create_runtime(config) | |
call_async_from_sync(runtime.connect) | |
initialize_runtime(runtime, instance=instance) | |
# Here's how you can run the agent (similar to the `main` function) and get the final task state | |
state: State | None = asyncio.run( | |
run_controller( | |
config=config, | |
initial_user_action=MessageAction(content=instruction), | |
runtime=runtime, | |
fake_user_response_fn=FAKE_RESPONSES[metadata.agent_class], | |
) | |
) | |
if state is None: | |
raise ValueError('State should not be None.') | |
# ============================================= | |
# result evaluation | |
# ============================================= | |
return_val = complete_runtime(runtime, instance) | |
agent_answer = return_val['agent_answer'] | |
final_ans = return_val['final_ans'] | |
# If the agent answer is not found, retrieve it from the history | |
if agent_answer is None: | |
agent_answer = '' | |
logger.info('Retrieving agent answer from history.') | |
raw_ans = '' | |
# retrieve the last agent message or thought | |
for event in reversed(state.history): | |
if event.source == 'agent': | |
if isinstance(event, AgentFinishAction): | |
raw_ans = event.thought | |
break | |
elif isinstance(event, MessageAction): | |
raw_ans = event.content | |
break | |
elif isinstance(event, CmdRunAction): | |
raw_ans = event.thought | |
break | |
# parse the answer for a solution tag | |
agent_answer = re.findall(r'<solution>(.*?)</solution>', raw_ans, re.DOTALL) | |
if len(agent_answer) == 0: | |
logger.warning(f'Failed to parse model answer: {raw_ans}') | |
agent_answer = raw_ans | |
else: | |
agent_answer = agent_answer[0] | |
comparison_method = instance.comparison_method | |
logger.info( | |
f'Final message: {agent_answer} | Ground truth: {final_ans} | Comparison method: {comparison_method}' | |
) | |
test_result = compare_results(comparison_method, agent_answer, final_ans) | |
# history is now available as a stream of events, rather than list of pairs of (Action, Observation) | |
# for compatibility with the existing output format, we can remake the pairs here | |
# remove when it becomes unnecessary | |
histories = compatibility_for_eval_history_pairs(state.history) | |
metrics = state.metrics.get() if state.metrics else None | |
# Save the output | |
output = EvalOutput( | |
instance_id=instance.instance_id, | |
instance=instance.to_dict(), | |
instruction=instruction, | |
metadata=metadata, | |
history=histories, | |
metrics=metrics, | |
error=state.last_error if state and state.last_error else None, | |
test_result={ | |
'agent_answer': agent_answer, | |
'final_answer': final_ans, | |
'check_method': comparison_method, | |
'result': test_result, | |
}, | |
) | |
return output | |
if __name__ == '__main__': | |
args = parse_arguments() | |
dataset = load_dataset('iFurySt/AgentBench') | |
agent_bench_tests = dataset['osbench'].to_pandas() | |
llm_config = None | |
if args.llm_config: | |
llm_config = get_llm_config_arg(args.llm_config) | |
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results | |
llm_config.modify_params = False | |
if llm_config is None: | |
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}') | |
metadata = make_metadata( | |
llm_config, | |
'AgentBench-OS', | |
args.agent_cls, | |
args.max_iterations, | |
args.eval_note, | |
args.eval_output_dir, | |
) | |
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl') | |
instances = prepare_dataset(agent_bench_tests, output_file, args.eval_n_limit) | |
run_evaluation( | |
instances, metadata, output_file, args.eval_num_workers, process_instance | |
) | |