Spaces:
Build error
Build error
import asyncio | |
import copy | |
import os | |
import tempfile | |
from typing import Any | |
import pandas as pd | |
from datasets import load_dataset | |
from evaluation.benchmarks.aider_bench.helper import ( | |
FAKE_RESPONSES, | |
INST_SUFFIXES, | |
INSTRUCTIONS_ADDENDUM, | |
) | |
from evaluation.utils.shared import ( | |
EvalMetadata, | |
EvalOutput, | |
compatibility_for_eval_history_pairs, | |
get_default_sandbox_config_for_eval, | |
make_metadata, | |
prepare_dataset, | |
reset_logger_for_multiprocessing, | |
run_evaluation, | |
) | |
from openhands.controller.state.state import State | |
from openhands.core.config import ( | |
OpenHandsConfig, | |
get_llm_config_arg, | |
load_from_toml, | |
parse_arguments, | |
) | |
from openhands.core.logger import openhands_logger as logger | |
from openhands.core.main import create_runtime, run_controller | |
from openhands.events.action import CmdRunAction, MessageAction | |
from openhands.events.observation import CmdOutputObservation | |
from openhands.runtime.base import Runtime | |
from openhands.utils.async_utils import call_async_from_sync | |
# Configure visibility of unit tests to the Agent. | |
USE_UNIT_TESTS = os.environ.get('USE_UNIT_TESTS', 'false').lower() == 'true' | |
SKIP_NUM = os.environ.get('SKIP_NUM') | |
SKIP_NUM = ( | |
int(SKIP_NUM) if SKIP_NUM and SKIP_NUM.isdigit() and int(SKIP_NUM) >= 0 else None | |
) | |
def get_config( | |
metadata: EvalMetadata, | |
) -> OpenHandsConfig: | |
sandbox_config = get_default_sandbox_config_for_eval() | |
sandbox_config.base_container_image = 'python:3.11-bookworm' | |
config = OpenHandsConfig( | |
default_agent=metadata.agent_class, | |
run_as_openhands=False, | |
runtime=os.environ.get('RUNTIME', 'docker'), | |
max_iterations=metadata.max_iterations, | |
sandbox=sandbox_config, | |
# do not mount workspace | |
workspace_base=None, | |
workspace_mount_path=None, | |
) | |
config.set_llm_config(metadata.llm_config) | |
agent_config = config.get_agent_config(metadata.agent_class) | |
agent_config.enable_prompt_extensions = False | |
# copy 'draft_editor' config if exists | |
config_copy = copy.deepcopy(config) | |
load_from_toml(config_copy) | |
if 'draft_editor' in config_copy.llms: | |
config.set_llm_config(config_copy.llms['draft_editor'], 'draft_editor') | |
return config | |
def initialize_runtime( | |
runtime: Runtime, | |
instance: pd.Series, | |
): | |
"""Initialize the runtime for the agent. | |
This function is called before the runtime is used to run the agent. | |
""" | |
logger.info(f'\n{"-" * 50} BEGIN Runtime Initialization Fn {"-" * 50}\n') | |
obs: CmdOutputObservation | |
# Set instance id | |
action = CmdRunAction(command='mkdir -p /workspace') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
assert obs.exit_code == 0 | |
action = CmdRunAction(command='cd /workspace') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
assert obs.exit_code == 0 | |
with tempfile.TemporaryDirectory() as tmpdir: | |
file_path = os.path.join(tmpdir, f'{instance.instance_name}.py') | |
with open(file_path, 'w') as f: | |
f.write(instance.signature) | |
runtime.copy_to( | |
file_path, | |
'/workspace', | |
) | |
if USE_UNIT_TESTS: | |
file_path = os.path.join(tmpdir, f'{instance.instance_name}_test.py') | |
with open(file_path, 'w') as f: | |
f.write(instance.test) | |
runtime.copy_to( | |
file_path, | |
'/workspace', | |
) | |
logger.info(f'\n{"-" * 50} END Runtime Initialization Fn {"-" * 50}\n') | |
def complete_runtime( | |
runtime: Runtime, | |
instance: pd.Series, | |
) -> dict[str, Any]: | |
"""Complete the runtime for the agent. | |
This function is called before the runtime is used to run the agent. | |
If you need to do something in the sandbox to get the correctness metric after | |
the agent has run, modify this function. | |
""" | |
logger.info(f'\n{"-" * 50} BEGIN Runtime Completion Fn {"-" * 50}\n') | |
obs: CmdOutputObservation | |
# Rewriting the test file to ignore any changes Agent may have made. | |
script_name = f'{instance.instance_name}_test.py' | |
with tempfile.TemporaryDirectory() as tmpdir: | |
file_path = os.path.join(tmpdir, script_name) | |
with open(file_path, 'w') as f: | |
f.write(instance.test) | |
runtime.copy_to( | |
file_path, | |
'/workspace', | |
) | |
logger.info(f'Running test file: {script_name}') | |
action = CmdRunAction(command=f'python3 -m unittest {script_name}') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
logger.info(obs, extra={'msg_type': 'OBSERVATION'}) | |
exit_code = 1 | |
if isinstance(obs, CmdOutputObservation): | |
exit_code = obs.exit_code | |
logger.info(f'\n{"-" * 50} END Runtime Completion Fn {"-" * 50}\n') | |
runtime.close() | |
return { | |
'test_output': obs.content, | |
'exit_code': exit_code, | |
} | |
def process_instance( | |
instance: pd.Series, | |
metadata: EvalMetadata, | |
reset_logger: bool = True, | |
) -> EvalOutput: | |
config = get_config(metadata) | |
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation | |
if reset_logger: | |
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs') | |
reset_logger_for_multiprocessing(logger, str(instance.instance_id), log_dir) | |
else: | |
logger.info( | |
f'\nStarting evaluation for instance {str(instance.instance_id)}.\n' | |
) | |
# ============================================= | |
# build instruction | |
# ============================================= | |
# Prepare instruction | |
logger.info(instance) | |
instruction = instance.instruction | |
instruction += INSTRUCTIONS_ADDENDUM.format( | |
signature_file=f'{instance.instance_name}.py', | |
) | |
if USE_UNIT_TESTS: | |
logger.info( | |
f'\nInstruction to run test_file: {instance.instance_name}_test.py\n' | |
) | |
instruction += ( | |
f'Use `python -m unittest {instance.instance_name}_test.py` to run the test_file ' | |
'and verify the correctness of your solution. DO NOT EDIT the test file.\n\n' | |
) | |
instruction += ( | |
'IMPORTANT: You should ONLY interact with the environment provided ' | |
'to you AND NEVER ASK FOR HUMAN HELP.\n' | |
) | |
# NOTE: You can actually set slightly different instruction for different agents | |
instruction += INST_SUFFIXES[metadata.agent_class] | |
# ============================================= | |
# create sandbox and run the agent | |
# ============================================= | |
runtime: Runtime = create_runtime(config) | |
call_async_from_sync(runtime.connect) | |
initialize_runtime(runtime, instance=instance) | |
# Here's how you can run the agent (similar to the `main` function) and get the final task state | |
state: State | None = asyncio.run( | |
run_controller( | |
config=config, | |
initial_user_action=MessageAction(content=instruction), | |
runtime=runtime, | |
fake_user_response_fn=FAKE_RESPONSES[metadata.agent_class], | |
) | |
) | |
if state is None: | |
raise ValueError('State should not be None.') | |
# # ============================================= | |
# # result evaluation | |
# # ============================================= | |
return_val = complete_runtime(runtime, instance) | |
exit_code = return_val['exit_code'] | |
test_output = return_val['test_output'] | |
errors = [] | |
test_cases = None | |
if test_output.find('SyntaxError') != -1: | |
errors += 'SyntaxError' | |
elif test_output.find('IndentationError') != -1: | |
errors += 'IndentationError' | |
else: | |
test_cases = test_output[: test_output.find('\r')] | |
test_result = { | |
'exit_code': exit_code, | |
'test_cases': test_cases, | |
'errors': errors, | |
} | |
# history is now available as a stream of events, rather than list of pairs of (Action, Observation) | |
# for compatibility with the existing output format, we can remake the pairs here | |
# remove when it becomes unnecessary | |
histories = compatibility_for_eval_history_pairs(state.history) | |
metrics = state.metrics.get() if state.metrics else None | |
# Save the output | |
output = EvalOutput( | |
instance_id=str(instance.instance_id), | |
instance=instance.to_dict(), | |
instruction=instruction, | |
metadata=metadata, | |
history=histories, | |
metrics=metrics, | |
error=state.last_error if state and state.last_error else None, | |
test_result=test_result, | |
) | |
return output | |
if __name__ == '__main__': | |
args = parse_arguments() | |
dataset = load_dataset('RajMaheshwari/Exercism-Python') | |
aider_bench_tests = dataset['train'].to_pandas() | |
llm_config = None | |
if args.llm_config: | |
llm_config = get_llm_config_arg(args.llm_config) | |
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results | |
llm_config.modify_params = False | |
if llm_config is None: | |
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}') | |
metadata = make_metadata( | |
llm_config, | |
'AiderBench', | |
args.agent_cls, | |
args.max_iterations, | |
args.eval_note, | |
args.eval_output_dir, | |
) | |
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl') | |
# Parse dataset IDs if provided | |
eval_ids = None | |
if args.eval_ids: | |
eval_ids = str(args.eval_ids).split(',') | |
logger.info(f'\nUsing specific dataset IDs: {eval_ids}\n') | |
instances = prepare_dataset( | |
aider_bench_tests, | |
output_file, | |
args.eval_n_limit, | |
eval_ids=eval_ids, | |
skip_num=SKIP_NUM, | |
) | |
run_evaluation( | |
instances, | |
metadata, | |
output_file, | |
args.eval_num_workers, | |
process_instance, | |
) | |