Spaces:
Build error
Build error
import asyncio | |
import json | |
import os | |
import httpx | |
import pandas as pd | |
from evaluation.benchmarks.gorilla.utils import encode_question, get_data_for_hub | |
from evaluation.utils.shared import ( | |
EvalMetadata, | |
EvalOutput, | |
codeact_user_response, | |
compatibility_for_eval_history_pairs, | |
get_default_sandbox_config_for_eval, | |
make_metadata, | |
prepare_dataset, | |
reset_logger_for_multiprocessing, | |
run_evaluation, | |
) | |
from openhands.controller.state.state import State | |
from openhands.core.config import ( | |
OpenHandsConfig, | |
get_llm_config_arg, | |
get_parser, | |
) | |
from openhands.core.logger import openhands_logger as logger | |
from openhands.core.main import create_runtime, run_controller | |
from openhands.events.action import MessageAction | |
from openhands.utils.async_utils import call_async_from_sync | |
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = { | |
'CodeActAgent': codeact_user_response, | |
} | |
AGENT_CLS_TO_INST_SUFFIX = { | |
'CodeActAgent': 'When you think you have completed the request, please finish the interaction using the "finish" tool.\n' | |
} | |
def get_config( | |
metadata: EvalMetadata, | |
) -> OpenHandsConfig: | |
sandbox_config = get_default_sandbox_config_for_eval() | |
sandbox_config.base_container_image = 'python:3.12-bookworm' | |
config = OpenHandsConfig( | |
default_agent=metadata.agent_class, | |
run_as_openhands=False, | |
runtime='docker', | |
max_iterations=metadata.max_iterations, | |
sandbox=sandbox_config, | |
# do not mount workspace | |
workspace_base=None, | |
workspace_mount_path=None, | |
) | |
config.set_llm_config(metadata.llm_config) | |
agent_config = config.get_agent_config(metadata.agent_class) | |
agent_config.enable_prompt_extensions = False | |
return config | |
def process_instance( | |
instance: pd.Series, | |
metadata: EvalMetadata, | |
reset_logger: bool = True, | |
) -> EvalOutput: | |
config = get_config(metadata) | |
instance_id = instance['question_id'] | |
question = instance['question'] | |
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation | |
if reset_logger: | |
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs') | |
reset_logger_for_multiprocessing(logger, instance_id, log_dir) | |
else: | |
logger.info(f'Starting evaluation for instance {instance_id}.') | |
# Prepare instruction | |
instruction = encode_question(question, instance['hub']) | |
instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n' | |
# NOTE: You can actually set slightly different instruction for different agents | |
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class] | |
# logger.info(f'Instruction:\n{instruction}', extra={'msg_type': 'OBSERVATION'}) | |
# Here's how you can run the agent (similar to the `main` function) and get the final task state | |
runtime = create_runtime(config) | |
call_async_from_sync(runtime.connect) | |
state: State | None = asyncio.run( | |
run_controller( | |
config=config, | |
initial_user_action=MessageAction(content=instruction), | |
runtime=runtime, | |
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get( | |
metadata.agent_class | |
), | |
) | |
) | |
# ======= Attempt to evaluate the agent's edits ======= | |
# If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction) | |
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation. | |
if state is None: | |
raise ValueError('State should not be None.') | |
# retrieve the last message from the agent | |
last_agent_message = state.get_last_agent_message() | |
model_answer_raw = last_agent_message.content if last_agent_message else '' | |
# attempt to parse model_answer | |
ast_eval_fn = instance['ast_eval'] | |
correct, hallucination = ast_eval_fn(instance_id, model_answer_raw) | |
metrics = state.metrics.get() if state.metrics else None | |
logger.info( | |
f'Final message: {model_answer_raw} | Correctness: {correct} | Hallucination: {hallucination}' | |
) | |
# history is now available as a stream of events, rather than list of pairs of (Action, Observation) | |
# for compatibility with the existing output format, we can remake the pairs here | |
# remove when it becomes unnecessary | |
histories = compatibility_for_eval_history_pairs(state.history) | |
output = EvalOutput( | |
instance_id=instance_id, | |
metadata=metadata, | |
history=histories, | |
metrics=metrics, | |
error=state.last_error if state and state.last_error else None, | |
test_result={ | |
'text': model_answer_raw, | |
'correct': correct, | |
'hallucination': hallucination, | |
}, | |
) | |
return output | |
if __name__ == '__main__': | |
parser = get_parser() | |
parser.add_argument( | |
'--hubs', | |
type=str, | |
help='Which hubs to evaluate from APIBench. APIBench contains 3 hubs, namely huggingface, torch, and tensorflow. You could choose one or more from hf, torch, or tf, separated by commas. For example, the default is --hub hf,torch,tf.', | |
default='hf,torch,tf', | |
) | |
args, _ = parser.parse_known_args() | |
llm_config = None | |
if args.llm_config: | |
llm_config = get_llm_config_arg(args.llm_config) | |
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results | |
llm_config.modify_params = False | |
if llm_config is None: | |
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}') | |
hubs = args.hubs.split(',') | |
if len(hubs) == 0: | |
raise ValueError('Please choose at least one from hf, torch, and tf for hubs.') | |
dfs = [] | |
for hub in hubs: | |
logger.info(f'Evaluating APIBench {hub} test') | |
df = get_data_for_hub(hub) | |
dfs.append(df) | |
dataset_df = pd.concat(dfs) | |
dataset_df.rename(columns={'question_id': 'instance_id'}, inplace=True) | |
metadata = make_metadata( | |
llm_config=llm_config, | |
dataset_name=f'gorilla-{hub}', | |
agent_class=args.agent_cls, | |
max_iterations=args.max_iterations, | |
eval_note=args.eval_note, | |
eval_output_dir=args.eval_output_dir, | |
data_split=args.data_split, | |
) | |
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl') | |
dataset = prepare_dataset( | |
dataset_df, output_file=output_file, eval_n_limit=args.eval_n_limit | |
) | |
file_path = os.path.join(os.path.dirname(__file__), 'my-languages.so') | |
# Check if the file exists | |
if not os.path.exists(file_path): | |
url = 'https://raw.githubusercontent.com/ShishirPatil/gorilla/main/eval/eval-scripts/codebleu/parser/my-languages.so' | |
response = httpx.get(url) | |
with open(file_path, 'wb') as f: | |
f.write(response.content) | |
else: | |
print('File already exists, skipping download.') | |
run_evaluation( | |
dataset=dataset, | |
metadata=metadata, | |
output_file=output_file, | |
num_workers=args.eval_num_workers, | |
process_instance_func=process_instance, | |
) | |
# Read the output file and calculate the accuracy | |
total_correct = 0 | |
total_hallucination = 0 | |
output = [] | |
with open(output_file, 'r') as f: | |
for line in f: | |
data = json.loads(line) | |
if data['test_result']['correct']: | |
total_correct += 1 | |
if data['test_result']['hallucination']: | |
total_hallucination += 1 | |
output.append(data) | |
logger.info( | |
f'Evaluation finished for {hub}. Total: {len(output)}; Correct: {total_correct}; Hallucination: {total_hallucination}. Accuracy: {total_correct / len(output)}' | |
) | |