Spaces:
Build error
Build error
import asyncio | |
import functools | |
import os | |
from typing import Any | |
import pandas as pd | |
from datasets import load_dataset | |
from evaluation.benchmarks.mint.datatypes import TaskState | |
from evaluation.benchmarks.mint.env import SimplifiedEnv | |
from evaluation.benchmarks.mint.prompts import ToolPromptTemplate | |
from evaluation.benchmarks.mint.tasks import Task | |
from evaluation.utils.shared import ( | |
EvalMetadata, | |
EvalOutput, | |
compatibility_for_eval_history_pairs, | |
get_default_sandbox_config_for_eval, | |
make_metadata, | |
prepare_dataset, | |
reset_logger_for_multiprocessing, | |
run_evaluation, | |
) | |
from openhands.controller.state.state import State | |
from openhands.core.config import ( | |
OpenHandsConfig, | |
get_llm_config_arg, | |
get_parser, | |
) | |
from openhands.core.logger import openhands_logger as logger | |
from openhands.core.main import create_runtime, run_controller | |
from openhands.events.action import ( | |
Action, | |
CmdRunAction, | |
MessageAction, | |
) | |
from openhands.events.observation import CmdOutputObservation | |
from openhands.runtime.base import Runtime | |
from openhands.utils.async_utils import call_async_from_sync | |
def codeact_user_response_mint(state: State, task: Task, task_config: dict[str, int]): | |
logger.info(f'Gold reference: {task.reference}') | |
logger.info(f'Task config: {task_config}') | |
env = SimplifiedEnv( | |
agent_state=state, | |
task=task, | |
task_config=task_config, | |
) | |
last_action = next( | |
(event for event in reversed(state.history) if isinstance(event, Action)), | |
None, | |
) | |
result_state: TaskState = env.step(last_action.message or '') | |
state.extra_data['task_state'] = result_state | |
if not result_state.latest_output: | |
# Task is finished | |
msg = '/exit' | |
else: | |
msg = result_state.latest_output['content'] | |
logger.info('User response:' + msg) | |
return msg | |
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = { | |
'CodeActAgent': codeact_user_response_mint, | |
} | |
AGENT_CLS_TO_INST_SUFFIX = { | |
'CodeActAgent': 'IMPORTANT: When your answer is confirmed by the user to be correct, you can use the "finish" tool to finish the interaction.\n' | |
} | |
with open(os.path.join(os.path.dirname(__file__), 'requirements.txt'), 'r') as f: | |
MINT_DEPENDENCIES = f.read().splitlines() | |
def load_incontext_example(task_name: str, with_tool: bool = True): | |
assert with_tool, 'NOT with_tool is not supported yet' | |
subset = { | |
'gsm8k': 'reasoning', | |
'math': 'reasoning', | |
'mmlu': 'reasoning', | |
'theoremqa': 'reasoning', | |
'mbpp': 'mbpp', | |
'humaneval': 'humaneval', | |
}[task_name] | |
with open( | |
os.path.join( | |
os.path.dirname(__file__), | |
'tasks', | |
'in_context_examples', | |
subset, | |
'with_tool.txt', | |
), | |
'r', | |
) as f: | |
return f.read() | |
def get_config( | |
metadata: EvalMetadata, | |
) -> OpenHandsConfig: | |
sandbox_config = get_default_sandbox_config_for_eval() | |
sandbox_config.base_container_image = 'xingyaoww/od-eval-mint:v1.0' | |
sandbox_config.runtime_extra_deps = ( | |
f'$OH_INTERPRETER_PATH -m pip install {" ".join(MINT_DEPENDENCIES)}' | |
) | |
config = OpenHandsConfig( | |
default_agent=metadata.agent_class, | |
run_as_openhands=False, | |
runtime='docker', | |
max_iterations=metadata.max_iterations, | |
sandbox=sandbox_config, | |
# do not mount workspace | |
workspace_base=None, | |
workspace_mount_path=None, | |
) | |
config.set_llm_config(metadata.llm_config) | |
agent_config = config.get_agent_config(metadata.agent_class) | |
agent_config.enable_prompt_extensions = False | |
return config | |
def initialize_runtime(runtime: Runtime): | |
"""Initialize the runtime for the agent. | |
This function is called before the runtime is used to run the agent. | |
""" | |
logger.info(f'{"-" * 50} BEGIN Runtime Initialization Fn {"-" * 50}') | |
obs: CmdOutputObservation | |
# Set instance id | |
action = CmdRunAction(command='mkdir -p /workspace') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
assert obs.exit_code == 0 | |
action = CmdRunAction(command='cd /workspace') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
assert obs.exit_code == 0 | |
logger.info(f'{"-" * 50} END Runtime Initialization Fn {"-" * 50}') | |
def process_instance( | |
instance: Any, | |
metadata: EvalMetadata, | |
reset_logger: bool = True, | |
): | |
config = get_config(metadata) | |
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation | |
if reset_logger: | |
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs') | |
reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir) | |
else: | |
logger.info(f'Starting evaluation for instance {instance.instance_id}.') | |
# Prepare instruction | |
assert metadata.details is not None | |
instruction = ToolPromptTemplate(use_tool=True)( | |
max_total_steps=metadata.max_iterations, | |
max_propose_solution=metadata.details['max_propose_solution'], | |
in_context_example=instance.in_context_example, | |
task_prompt='Task:\n' + instance.prompt, | |
) | |
instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you or provide the concise RESULT inside <solution> tag AND NEVER ASK FOR HUMAN HELP.\n' | |
# NOTE: You can actually set slightly different instruction for different agents | |
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class] | |
# Here's how you can run the agent (similar to the `main` function) and get the final task state | |
fake_user_response_fn = functools.partial( | |
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[metadata.agent_class], | |
task=instance, | |
task_config={ | |
'max_iterations': metadata.max_iterations, | |
'max_propose_solution': metadata.details['max_propose_solution'], | |
}, | |
) | |
runtime = create_runtime(config) | |
call_async_from_sync(runtime.connect) | |
initialize_runtime(runtime) | |
state: State | None = asyncio.run( | |
run_controller( | |
config=config, | |
initial_user_action=MessageAction(content=instruction), | |
runtime=runtime, | |
fake_user_response_fn=fake_user_response_fn, | |
) | |
) | |
if state is None: | |
raise ValueError('State should not be None.') | |
task_state = None | |
if 'task_state' in state.extra_data: | |
task_state = state.extra_data['task_state'] | |
logger.info('Task state: ' + str(task_state.to_dict())) | |
metrics = state.metrics.get() if state.metrics else None | |
# history is now available as a stream of events, rather than list of pairs of (Action, Observation) | |
# for compatibility with the existing output format, we can remake the pairs here | |
# remove when it becomes unnecessary | |
histories = compatibility_for_eval_history_pairs(state.history) | |
# Save the output | |
output = EvalOutput( | |
instance_id=instance.instance_id, | |
instance=instance.to_dict(), | |
instruction=instruction, | |
metadata=metadata, | |
history=histories, | |
metrics=metrics, | |
error=state.last_error if state and state.last_error else None, | |
test_result={ | |
'success': task_state.success if task_state else False, | |
}, | |
) | |
return output | |
if __name__ == '__main__': | |
parser = get_parser() | |
SUBSETS = [ | |
# Eurus subset: https://arxiv.org/abs/2404.02078 | |
'math', | |
# 'gsm8k', | |
'mmlu', | |
'theoremqa', | |
'mbpp', | |
'humaneval', | |
] | |
parser.add_argument( | |
'--subset', | |
default='all', | |
choices=SUBSETS + ['all'], | |
type=str, | |
help='subset of the dataset to be used', | |
) | |
parser.add_argument( | |
'--max-propose-solution', | |
default=2, | |
type=int, | |
help='maximum number of times the agent can propose a solution', | |
) | |
args, _ = parser.parse_known_args() | |
# NOTE: It is preferable to load datasets from huggingface datasets and perform post-processing | |
# so we don't need to manage file uploading to OpenHands's repo | |
if args.subset == 'all': | |
subsets = SUBSETS | |
else: | |
subsets = [args.subset] | |
dataset_dfs = [] | |
for subset in subsets: | |
in_context_example = load_incontext_example(subset) | |
_cur_dataset = load_dataset( | |
'ryanhoangt/xingyaoww-mint-bench', name=subset, split='test' | |
) | |
logger.info(f'Loaded MINT - {subset} subset') | |
_df = _cur_dataset.to_pandas().rename(columns={'id': 'instance_id'}) | |
_df['instance_id'] = _df['instance_id'].apply(lambda x: f'{subset}/{x}') # noqa | |
_df['in_context_example'] = in_context_example | |
dataset_dfs.append(_df) | |
logger.info(f'Loaded {len(_df)} instances for subset: {subset}') | |
dataset_df = pd.concat(dataset_dfs) | |
logger.info(f'Loaded {len(dataset_df)} instances for subset: {subsets}') | |
llm_config = None | |
if args.llm_config: | |
llm_config = get_llm_config_arg(args.llm_config) | |
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results | |
llm_config.modify_params = False | |
if llm_config is None: | |
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}') | |
metadata = make_metadata( | |
llm_config, | |
f'MINT-{args.subset}', | |
args.agent_cls, | |
args.max_iterations, | |
args.eval_note, | |
args.eval_output_dir, | |
details={'max_propose_solution': args.max_propose_solution}, | |
) | |
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl') | |
instances = prepare_dataset(dataset_df, output_file, args.eval_n_limit) | |
run_evaluation( | |
instances, metadata, output_file, args.eval_num_workers, process_instance | |
) | |