Spaces:
Build error
Build error
"""Implements evaluation of agents on ML-Bench, a benchmark for assessing the effectiveness of | |
Large Language Models (LLMs) in leveraging existing functions in open-source libraries for | |
machine learning tasks. The benchmark is introduced in the paper "ML-Bench: Evaluating Large | |
Language Models for Code Generation in Repository-Level Machine Learning Tasks" | |
(https://arxiv.org/abs/2311.09835). | |
Please see https://ghcr.io/super-dainiu/ml_bench and https://huggingface.co/datasets/super-dainiu/ml-bench | |
for more details on the dataset and docker image used in this evaluation script. | |
TODOs: | |
- Support additional evaluation settings, such as providing raw README content or using a | |
retriever to extract relevant segments. | |
- Clean up the code and docker image used for evaluation. | |
""" | |
import asyncio | |
import os | |
from typing import Any | |
import pandas as pd | |
from datasets import load_dataset | |
from evaluation.utils.shared import ( | |
EvalMetadata, | |
EvalOutput, | |
codeact_user_response, | |
compatibility_for_eval_history_pairs, | |
get_default_sandbox_config_for_eval, | |
make_metadata, | |
prepare_dataset, | |
reset_logger_for_multiprocessing, | |
run_evaluation, | |
) | |
from openhands.controller.state.state import State | |
from openhands.core.config import ( | |
OpenHandsConfig, | |
get_llm_config_arg, | |
get_parser, | |
load_openhands_config, | |
) | |
from openhands.core.logger import openhands_logger as logger | |
from openhands.core.main import create_runtime, run_controller | |
from openhands.events.action import CmdRunAction, MessageAction | |
from openhands.events.observation import CmdOutputObservation | |
from openhands.runtime.base import Runtime | |
from openhands.utils.async_utils import call_async_from_sync | |
config = load_openhands_config() | |
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = { | |
'CodeActAgent': codeact_user_response, | |
} | |
AGENT_CLS_TO_INST_SUFFIX = { | |
'CodeActAgent': 'When you think you have completed the task, please finish the interaction using the "finish" tool.\n' | |
} | |
ID2CONDA = { | |
1: 'dgl_DS', | |
2: 'bert_DS', | |
3: 'lavis_DS', | |
4: 'if_DS', | |
5: 'V2V_DS', | |
6: 'esm_DS', | |
7: 'OP_DS', | |
8: 'TSL_DS', | |
9: 'EAP_DS', | |
10: 'PG_DS', | |
11: 'PIM_DS', | |
12: 'AD2_DS', | |
13: 'L3_DS', | |
14: 'MZ2_DS', | |
15: 'GSA2_DS', | |
} | |
def get_config( | |
metadata: EvalMetadata, | |
) -> OpenHandsConfig: | |
sandbox_config = get_default_sandbox_config_for_eval() | |
sandbox_config.base_container_image = 'public.ecr.aws/i5g0m1f6/ml-bench' | |
config = OpenHandsConfig( | |
default_agent=metadata.agent_class, | |
run_as_openhands=False, | |
runtime='docker', | |
max_iterations=metadata.max_iterations, | |
sandbox=sandbox_config, | |
# do not mount workspace | |
workspace_base=None, | |
workspace_mount_path=None, | |
) | |
config.set_llm_config(metadata.llm_config) | |
agent_config = config.get_agent_config(metadata.agent_class) | |
agent_config.enable_prompt_extensions = False | |
return config | |
def initialize_runtime( | |
runtime: Runtime, | |
instance: pd.Series, # this argument is not required | |
): | |
"""Initialize the runtime for the agent. | |
This function is called before the runtime is used to run the agent. | |
""" | |
logger.info(f'{"-" * 50} BEGIN Runtime Initialization Fn {"-" * 50}') | |
obs: CmdOutputObservation | |
# Set instance id | |
action = CmdRunAction(command='mkdir -p /workspace') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
assert obs.exit_code == 0 | |
# Set up the task environment | |
action = CmdRunAction(command=f'conda activate {ID2CONDA[instance["github_id"]]}') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
assert obs.exit_code == 0 | |
repo_url = instance['github'] | |
repo_name = repo_url.split('/')[-1] | |
action = CmdRunAction(command=f'git clone {repo_url} /workspace/{repo_name}') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
assert obs.exit_code == 0 | |
action = CmdRunAction(command=f'chmod -R 777 /workspace/{repo_name}') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
assert obs.exit_code == 0 | |
# Navigate to the task's code path | |
task_path = os.path.join('/workspace', repo_name, instance['path'][2:]) | |
action = CmdRunAction(command=f'cd {task_path}') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
assert obs.exit_code == 0 | |
logger.info(f'{"-" * 50} END Runtime Initialization Fn {"-" * 50}') | |
def complete_runtime( | |
runtime: Runtime, | |
instance: pd.Series, # this argument is not required, but it is used to get the workspace_dir_name | |
) -> dict[str, Any]: | |
"""Complete the runtime for the agent. | |
This function is called before the runtime is used to run the agent. | |
If you need to do something in the sandbox to get the correctness metric after | |
the agent has run, modify this function. | |
""" | |
logger.info(f'{"-" * 50} BEGIN Runtime Completion Fn {"-" * 50}') | |
obs: CmdOutputObservation | |
repo_url = instance['github'] | |
repo_name = repo_url.split('/')[-1] | |
task_path = os.path.join('/workspace', repo_name, instance['path'][2:]) | |
# Evaluate the agent's script | |
eval_script = os.path.join(task_path, 'run.sh') | |
logger.info(f'Running evaluation script: {eval_script}') | |
action = CmdRunAction(command=f'cat {eval_script}') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
if obs.exit_code == 0: | |
eval_script_content = obs.content | |
else: | |
logger.error(f'Error reading evaluation script: {obs.content}') | |
eval_script_content = '' | |
action = CmdRunAction( | |
command=f'timeout 120s conda run -n {ID2CONDA[instance["github_id"]]} bash {eval_script}', | |
timeout=600, | |
) | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
if obs.exit_code == 0: | |
eval_output = obs.content | |
else: | |
logger.error(f'Error running evaluation script: {obs.content}') | |
eval_output = '' | |
outputs = { | |
'eval_script_content': eval_script_content, | |
'eval_output': eval_output, | |
} | |
if obs.exit_code != 0 and obs.exit_code != 124: | |
logger.warning(f'Evaluation script failed with exit code {obs.exit_code}') | |
logger.warning(f'Output: {eval_output}') | |
outputs['success'] = int( | |
'KeyboardInterrupt' in eval_output | |
) # super-dainiu: assume ``KeyboardInterrupt`` is a success as is done in ML-Bench | |
else: | |
logger.info(f'Evaluation script succeeded with exit code {obs.exit_code}') | |
logger.info(f'Output: {eval_output}') | |
outputs['success'] = 1 | |
outputs['eval_exit_code'] = obs.exit_code | |
logger.info(f'{"-" * 50} END Runtime Completion Fn {"-" * 50}') | |
return outputs | |
def process_instance(instance: Any, metadata: EvalMetadata, reset_logger: bool = True): | |
config = get_config(metadata) | |
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation | |
if reset_logger: | |
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs') | |
reset_logger_for_multiprocessing(logger, instance['instance_id'], log_dir) | |
else: | |
logger.info(f'Starting evaluation for instance {instance["instance_id"]}.') | |
repo_url = instance['github'] | |
repo_name = repo_url.split('/')[-1] | |
task_path = os.path.join('/workspace', repo_name, instance['path'][2:]) | |
# Prepare the task instruction | |
instruction = ( | |
f'Please complete the Machine Learning task in the following repository: {repo_name}\n\n' | |
f'{instance["instruction"]}\n\n' | |
'You should create a script named `run.sh` under the specified path in the repo to run the task.\n\n' | |
f'You can find the task repo at: {task_path}\n\n' | |
+ ( | |
'Here is the prefix code for the task:\n' | |
'```bash\n' | |
f'{instance["prefix_code"]}\n' | |
'```\n\n' | |
if instance['prefix_code'] | |
else '' | |
) | |
+ 'You should terminate the subprocess after running the task (e.g., call subprocess.Popen(args).wait()).' | |
) | |
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class] | |
runtime = create_runtime(config) | |
call_async_from_sync(runtime.connect) | |
initialize_runtime(runtime, instance) | |
# Run the agent | |
state: State | None = asyncio.run( | |
run_controller( | |
config=config, | |
initial_user_action=MessageAction(content=instruction), | |
runtime=runtime, | |
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get( | |
metadata.agent_class | |
), | |
) | |
) | |
assert state is not None | |
metrics = state.metrics.get() if state.metrics else {} | |
test_result = complete_runtime(runtime) | |
# history is now available as a stream of events, rather than list of pairs of (Action, Observation) | |
# for compatibility with the existing output format, we can remake the pairs here | |
# remove when it becomes unnecessary | |
histories = compatibility_for_eval_history_pairs(state.history) | |
# Save the output | |
output = EvalOutput( | |
instance_id=instance['instance_id'], | |
instance=instance.to_dict(), | |
instruction=instruction, | |
metadata=metadata, | |
history=histories, | |
test_result=test_result, | |
metrics=metrics, | |
) | |
return output | |
if __name__ == '__main__': | |
parser = get_parser() | |
parser.add_argument( | |
'-s', | |
'--eval-split', | |
type=str, | |
default='quarter', | |
choices=['full', 'quarter'], | |
help='data split to evaluate on, either full or quarter', | |
) | |
args, _ = parser.parse_known_args() | |
data_split = args.eval_split | |
ml_bench = load_dataset('super-dainiu/ml-bench', split=data_split).to_pandas() | |
ml_bench.rename(columns={'id': 'instance_id'}, inplace=True) | |
llm_config = None | |
if args.llm_config: | |
llm_config = get_llm_config_arg(args.llm_config) | |
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results | |
llm_config.modify_params = False | |
if llm_config is None: | |
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}') | |
metadata = make_metadata( | |
llm_config, | |
f'ml-bench-{data_split}', | |
args.agent_cls, | |
args.max_iterations, | |
args.eval_note, | |
args.eval_output_dir, | |
) | |
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl') | |
instances = prepare_dataset(ml_bench, output_file, args.eval_n_limit) | |
run_evaluation( | |
instances, metadata, output_file, args.eval_num_workers, process_instance | |
) | |