Backup-bdg's picture
Upload 964 files
51ff9e5 verified
raw
history blame
9.5 kB
import sys
from typing import Callable, Optional, Sequence, TypeVar, Union
import nltk
import numpy as np
from fuzzywuzzy import fuzz
from rouge import Rouge
# increase recursion depth to ensure ROUGE can be calculated for long sentences
if sys.getrecursionlimit() < 10_000:
sys.setrecursionlimit(10_000)
def bleu(gold: list[str], pred: list[str]) -> float:
"""
Calculate BLEU score, using smoothing method 2 with auto reweighting, in the range of 0~100.
:param gold: list of gold tokens
:param pred: list of predicted tokens
:return: BLEU score
"""
if len(pred) == 0 or len(gold) == 0:
return 0.0
return 100.0 * nltk.translate.bleu_score.sentence_bleu(
[gold],
pred,
smoothing_function=nltk.translate.bleu_score.SmoothingFunction().method2,
auto_reweigh=True,
)
def batch_bleu(golds: list[list[str]], preds: list[list[str]]) -> list[float]:
"""
Calculate BLEU score for a batch of sentences.
:param golds: list of gold sentences
:param preds: list of predicted sentences
:return: list of BLEU scores
"""
if len(golds) != len(preds):
raise ValueError('golds and preds must have the same length')
return [bleu(gold, pred) for gold, pred in zip(golds, preds)]
def corpus_bleu(golds: list[list[str]], preds: list[list[str]]) -> float:
"""
Calculate corpus-level BLEU score for a batch of sentences.
:param golds: list of gold sentences
:param preds: list of predicted sentences
:return: corpus-level BLEU score
"""
if len(golds) != len(preds):
raise ValueError('golds and preds must have the same length')
return 100.0 * nltk.translate.bleu_score.corpus_bleu(
[[gold] for gold in golds],
preds,
smoothing_function=nltk.translate.bleu_score.SmoothingFunction().method2,
auto_reweigh=True,
)
def edit_sim(
gold: Union[str, list[str]], pred: Union[str, list[str]], sep: str = ' '
) -> float:
"""
Calculate char-level edit similarity, in the range of 0~100.
:param gold: gold sentence or list of gold tokens
:param pred: predicted sentence or list of predicted tokens
:param sep: separator between tokens
:return: char-level edit similarity
"""
if len(pred) == 0 or len(gold) == 0:
return 0.0
if isinstance(gold, list):
gold = sep.join(gold)
if isinstance(pred, list):
pred = sep.join(pred)
return fuzz.ratio(gold, pred)
def batch_edit_sim(
golds: list[Union[str, list[str]]],
preds: list[Union[str, list[str]]],
sep: str = ' ',
) -> list[float]:
"""
Calculate char-level edit similarity for a batch of sentences.
:param golds: list of gold sentences
:param preds: list of predicted sentences
:param sep: separator between tokens
:return: list of char-level edit similarity
"""
if len(golds) != len(preds):
raise ValueError('golds and preds must have the same length')
return [edit_sim(gold, pred, sep) for gold, pred in zip(golds, preds)]
T = TypeVar('T')
def exact_match(gold: T, pred: T) -> float:
"""
Calculate exact match accuracy, in the range of {0, 100}.
:param gold: gold sentence or list of gold tokens
:param pred: predicted sentence or list of predicted tokens
:return: exact match accuracy
"""
if len(pred) == 0 or len(gold) == 0:
return 0.0
return 100.0 if gold == pred else 0.0
def batch_exact_match(golds: list[T], preds: list[T]) -> list[float]:
"""
Calculate exact match accuracy for a batch of sentences.
:param golds: list of gold sentences
:param preds: list of predicted sentences
:return: list of exact match accuracy
"""
if len(golds) != len(preds):
raise ValueError('golds and preds must have the same length')
return [exact_match(gold, pred) for gold, pred in zip(golds, preds)]
def rouge_l(
gold: Union[str, list[str]], pred: Union[str, list[str]], sep: str = ' '
) -> dict[str, float]:
"""
Calculate ROUGE-L F1, precision, and recall scores, in the range of 0~100.
:param gold: gold sentence or list of gold tokens
:param pred: predicted sentence or list of predicted tokens
:return: {"p": precision, "r": recall, "f": F1}
"""
if len(pred) == 0 or len(gold) == 0:
return {'p': 0.0, 'r': 0.0, 'f': 0.0}
if isinstance(gold, list):
gold = sep.join(gold)
if isinstance(pred, list):
pred = sep.join(pred)
try:
rouge = Rouge()
scores = rouge.get_scores(hyps=pred, refs=gold, avg=True)
return {x: scores['rouge-l'][x] * 100.0 for x in ['p', 'r', 'f']}
except ValueError:
return {'p': 0.0, 'r': 0.0, 'f': 0.0}
def batch_rouge_l(
golds: list[Union[str, list[str]]],
preds: list[Union[str, list[str]]],
sep: str = ' ',
) -> dict[str, list[float]]:
"""
Calculate ROUGE-L F1, precision, and recall scores for a batch of sentences.
:param golds: list of gold sentences
:param preds: list of predicted sentences
:param sep: separator between tokens
:return: list of {"p": precision, "r": recall, "f": F1}
"""
if len(golds) != len(preds):
raise ValueError('golds and preds must have the same length')
scores = [rouge_l(gold, pred, sep) for gold, pred in zip(golds, preds)]
return {x: [score[x] for score in scores] for x in ['p', 'r', 'f']}
def accuracy(
gold: list[str],
pred: list[str],
ignore: Optional[Sequence[str]] = None,
) -> float:
"""
Calculate token-level accuracy, in the range of 0~100.
If gold and pred are not the same length, the longer one would be truncated.
:param gold: list of gold tokens
:param pred: list of predicted tokens
:param ignore: list of (gold) tokens to ignore
:return: accuracy
"""
if len(pred) == 0 or len(gold) == 0:
return 0.0
if ignore is None:
ignore = []
i = 0
total = 0
match = 0
while i < len(gold) and i < len(pred):
if gold[i] in ignore:
i += 1
continue
total += 1
if gold[i] == pred[i]:
match += 1
i += 1
if total == 0:
return 0.0
return 100.0 * match / total
def batch_accuracy(
golds: list[list[str]],
preds: list[list[str]],
ignore: Optional[Sequence[str]] = None,
) -> list[float]:
"""
Calculate token-level accuracy for a batch of sentences.
:param golds: list of gold sentences
:param preds: list of predicted sentences
:param ignore: list of (gold) tokens to ignore
:return: list of accuracy
"""
if len(golds) != len(preds):
raise ValueError('golds and preds must have the same length')
return [accuracy(gold, pred, ignore) for gold, pred in zip(golds, preds)]
def first_match_to_topk(
first_match_list: list[int], k_values: list[int]
) -> dict[int, list[float]]:
"""
Calculate top-k accuracy with the first match ranks (1-indexed).
:param first_match: first match ranks (1-indexed)
:param k_values: k values to consider
:return: a mapping from k to top-k accuracies (ranging from 0~100)
"""
return {k: [100.0 if x <= k else 0.0 for x in first_match_list] for k in k_values}
def pass_at_k(n: int, c: int, k: int) -> float:
"""
Sample pass@k metric according to the Codex paper, but in the scale of 0~100.
:param n: total number of samples
:param c: number of correct samples
:param k: k in pass@$k$
"""
if n < k or (n - c) < k:
# fallback to the (1 - (1-p)^k) formula
return (1 - (1 - (c / n)) ** k) * 100
else:
return (1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1)).item()) * 100
def self_bleu(samples: list[list[str]]) -> float:
"""
Calculate self-BLEU among the samples.
:param samples: the chosen m samples
:return: self-BLEU
"""
if len(samples) == 0:
return 100.0
scores = []
for i in range(len(samples)):
scores.append(
100.0
* nltk.translate.bleu_score.sentence_bleu(
[samples[j] for j in range(len(samples)) if j != i],
samples[i],
smoothing_function=nltk.translate.bleu_score.SmoothingFunction().method2,
auto_reweigh=True,
)
)
return np.mean(scores).item()
def self_edit_distance(samples: list[Union[str, list[str]]], sep=' ') -> float:
"""
Calculate self-edit-distance among the samples.
:param samples: the chosen m samples
:param sep: the separator between tokens
:return: self-edit-distance
"""
if len(samples) == 0:
return 0.0
scores = []
for i in range(len(samples)):
sample_i = samples[i]
if not isinstance(sample_i, str):
sample_i = sep.join(sample_i)
for j in range(len(samples)):
if i == j:
continue
sample_j = samples[j]
if not isinstance(sample_j, str):
sample_j = sep.join(sample_j)
scores.append(100 - fuzz.ratio(sample_i, sample_j))
return np.mean(scores).item()
QUALITY_METRICS: dict[str, Callable[[list[str], list[str]], float]] = {
'bleu': bleu,
'xmatch': exact_match,
'edit-sim': edit_sim,
'rouge-f': lambda g, p: rouge_l(g, p)['f'],
'rouge-p': lambda g, p: rouge_l(g, p)['p'],
'rouge-r': lambda g, p: rouge_l(g, p)['r'],
}